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1 Introduction and Motivation

The increasing importance of the Global Internet has
lead to it becoming one of the critical infrastructures [2]
on which almost every aspect of our lives depend. Thus
it is essential that the Internet be resilient, which we
define as the ability of the network to provide and
maintain an acceptable level of service in the face of
various faults and challenges to normal operation [133,
132]. It is generally recognised that the current Inter-
net is not as resilient, survivable, dependable, and se-
cure as needed given its increasingly central role in so-
ciety [14,70,126,20,17,148]. Thus, we need to ensure
that resilience is a fundamental design property of the
Future Internet, and seek ways to increase the resilience
of the current and future Internet. This requires an un-
derstanding of vulnerabilities of the current Internet,
as well as a methodology to test alternative proposals
to increase resilience. In particular, we are interested in
understanding, modelling, and analysing the properties
of dependability that quantifies the reliance that can be
placed on the service delivered including reliability and
availability [89] and performability that quantifies the
level of performance [101] when the network is chal-
lenged. This notion of resilience subsumes survivability
that is the ability to tolerate the correlated failures that
result from attacks and large-scale disasters [134,105,
59,66] and disruption-tolerance that is the ability to
communicate even when stable end-to-end paths may
not exist due to weak channel connectivity, mobility,
unpredictable delay, and energy constraints [134,62].
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This paper describes a comprehensive approach to
evaluate network resilience through analysis, simula-
tion, and experimentation, and is organised as follows:
Section 2 reviews the ResiliNets architectural frame-
work for network resilience based on a two-phase strat-
egy and principles for resilient network design. Section 3
presents the problem of generating realistic topologies
that can be used to evaluate network resilience, in-
troduces the KU-LoCGen topology generator and KU-
TopView, and discusses the issues of multi-level topol-
ogy overlays. Section 4 describes an analytical formula-
tion of resilience as the trajectory through a multilevel
two-dimensional state space with operational and ser-
vice dimensions and presents a few examples of this
analysis. Section 5 describes a simulation methodology
to evaluate the resilience of alternative network archi-
tectures with emphasis on attacks and area-based chal-
lenges using the KU-CSM challenge simulation module
with example simulation results. Section 6 briefly de-
scribes how the GpENTI large-scale programmable testbed
infrastructure can be used to experimentally validate
and cross-verify with analytical and simulation-based
resilience analysis. Finally, Section 7 summarises the
main points of the the paper and discusses future re-
search in this area.

2 Resilience Framework, Strategy, Principles

This section reviews the ResiliNets framework for re-
silient, survivable, and disruption-tolerant network ar-
chitecture and design [133,132]. First, a two-phase re-
silience strategy is described that provides the basis of
the metrics framework presented in Section 4. Then, a
set of design principles is presented with emphasis on
heterogeneity, redundancy, and diversity that are used
in the topology analysis in Section 3 and simulation
methodology in Section 5.

2.1 ResiliNets Strategy

There have been several systematic resilience strategies,
including ANSA [56], T1A1.2 [140], CMU-CERT [58],
and SUMOWIN [134]. This ResiliNets resilience frame-
work and strategy [133,132] are based in part on these
previous frameworks and provides the basis for the re-
silience evaluation methodology described in the rest
of the paper. More recently, the policy aspects of re-
silience mechanisms are being studied [130,125]. The
framework begins with a set of four axioms that moti-
vate the strategy:

Diagnose

Defend

Fig. 1 ResiliNets strategy

0. Faults are tnevitable; it is not possible to construct

perfect systems, nor is it possible to prevent chal-
lenges and threats!.
Understanding normal operation is necessary, in-
cluding the environment and application demands.
It is only by understanding normal operation that
we have any hope of determining when the network
is challenged or threatened.

2. FEzxpectation and preparation for adverse events
and conditions is necessary, so that that defences
and detection of challenges that disrupt normal op-
erations can occur. These challenges are inevitable.

3. Response to adverse events and conditions is re-
quired for resilience, by remediation ensuring cor-
rect operation and graceful degradation, restoration
to normal operation, diagnosis of root cause faults,
and refinement of future responses.

The ResiliNets strategy consists of two phases D?R?
+DR, as shown in Figure 1. At the core are passive
structural defences. The first active phase D?R2: de-
fend, detect, remediate, recover, is the inner control loop
and describes a set of activities that are undertaken in
order for a system to rapidly adapt to challenges and
attacks and maintain an acceptable level of service. The
second active phase DR: diagnose, refine, is the outer
loop that enables longer-term evolution of the system
in order to enhance the approaches to the activities of
the inner loop. The following sections briefly describe
the steps in this strategy.

2.1.1 D*R? Inner Loop

The first strategy phase consists of a passive core and
a cycle of four steps that are performed in real time

1 The strict usage of fault, error, and failure terminology
is based on [28] and fully explained in the ResiliNets context
in [133].
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and are directly involved in network operation and ser-
vice provision. In fact, there is not just one of these
cycles, but many operating simultaneously throughout
and across the network for each resilient subsystem,
triggered whenever an adverse event or condition is de-
tected.

Defend against challenges and threats to normal
operation. The basis for a resilient network is a set of
defences that reduce the probability of a fault leading
to a failure (fault-tolerance) and reduce the impact of
an adverse event on network service delivery. These de-
fences are identified by developing and analysing threat
models, and consist of a passive and active component.

Passive defences are primarily structural, suggest-
ing the use of trust boundaries, redundancy, diversity,
and heterogeneity. The main network techniques are to
provide geographically diverse redundant paths and al-
ternative technologies such as simultaneous wired and
wireless links, so that a challenge to part of the net-
work permits communication to be routed around the
failure [123].

Active defences consist of self-protection mechanisms
operating in the network that defend against challenges,
such as firewalls that filter traffic for anomalies and
known attack signatures, and the eventual connectivity
paradigm that permits communication to occur even
when stable end-to-end paths cannot be maintained.
Clearly, defences will not always prevent challenges from
penetrating the network, which leads to the next strat-
egy step: detect.

Detect when an adverse event or condition has oc-
curred. The second step is for the network as a dis-
tributed system, as well as individual components such
as routers, to detect challenges and to understand when
the defence mechanisms have failed [67]. There are three
main ways to determine if the network is challenged.
The first of these involves understanding the service
requirements and normal operational behaviour of a
system and detecting deviations from it — anomaly de-
tection based on metrics (described in Section 4). The
second approach involves detecting when errors occur
in a system, for example, by calculating CRCs (cyclic-
redundancy checks) to determine the existence of bit
errors that could lead to a service failure. Finally, a
system should detect service failures; an essential facet
of this is an understanding of service requirements. An
important aspect of detecting a challenge is determin-
ing its nature, which requires context awareness.

Remediate the effects of the adverse event or con-
dition. The next step is to remediate the effects of the
detected adverse event or condition to minimise the im-
pact on service delivery. The goal is to do the best
possible at all levels after an adverse event and dur-

ing an adverse condition. This requires adaptation and
autonomic behaviour so that corrective action can be
taken at all levels without direct human intervention, to
minimise the impact of service failure, including correct
operation with graceful degradation of performance.

A common example of remediation is for dynamic
routing protocols to reroute around failures (e.g. [80])
and for adaptive applications and congestion control al-
gorithms to degrade gracefully from acceptable to im-
paired service (Section 4).

Recover to original and normal operations. Once
the challenge is over after an adverse event or the end
of an adverse condition, the network may remain in a
degraded state (Section 4). When the end of a challenge
has been detected (e.g., a storm has passed, which re-
stores wireless connectivity), the system must recover
to its original optimal normal operation, since the net-
work is likely not to be in an ideal state, and continued
remediation activities may incur an additional resource
cost.

2.1.2 D+R Outer Loop

The second phase consists of two background opera-
tions that observe and modify the behaviour of the
D2R? cycle: diagnosis of faults and refinement of fu-
ture behaviour. While currently these activities gener-
ally have a significant human involvement, a future goal
is for autonomic systems to automate diagnosis and re-
finement.

Diagnose the fault that was the root cause. While
it is not possible to directly detect faults, we may be
able diagnose the fault that caused an observable er-
ror. In some cases this may be automated, but more
generally it is an offline process of root-cause analy-
sis. The goal is to either remove the fault (generally a
design flaw as opposed to an intentional design com-
promise) or add redundancy for fault-tolerance so that
service failures are avoided in the future. An example of
network-based fault diagnosis is the analysis of packet
traces to determine a protocol vulnerability that can
then be fixed.

Refine behaviour for the future based on past D?R?
cycles. The final aspect of the strategy is to refine be-
haviour for the future based on past D?R? cycles. The
goal is to learn and reflect on how the system has de-
fended, detected, remediated, and recovered so that all
of these can be improved to continuously increase the
resilience of the network using the evaluation techniques
described in this paper. This is an ongoing process that
requires that the network infrastructure, protocols, and
resilience mechanisms be evolvable. This is a significant
challenge given the current Internet hourglass waist of
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IPv4, BGP (border gateway protocol), and DNS (do-
main name system), as well as other mechanisms (e.g.
NAT - network address translation) and protocol ar-
chitectures (e.g. TCP and HTTP) that are entrenched
and resist innovation.

2.2 Resilience Design Principles

The D?R?4-DR strategy leads to a set of principles for
the design of resilient networks and systems, developed
as part of the ResiliNets framework [133,127] that pro-
vides detailed explanations with their derivation from
the strategy and inter-relaitonships, as well as more ex-
tensive background references. This section provides a
brief summary of the principles, shown in Figure 2, and
describes the way in which they relate to the evaluation
of network resilience that is the subject of the rest of
this paper.

2.2.1 Prerequisites

The first set of five principles span the domain of pre-
requisites necessary to build a resilient system. Three
of these are essential for the evaluation and analysis of
resilience: service requirements, normal behaviour, and
metrics.

P1. Service requirements of applications need to be
determined to understand the level of resilience the sys-
tem should provide. Service parameters are the vertical
axis P of the metrics state space described in Section 4.
The resilience requirements at a particular service level,
consisting of a set of parameters P, define acceptable,
impaired, and unacceptable service.

P2. Normal behaviour of the network is a combina-
tion of design and engineering specification, along with
monitoring while unchallenged to learn the network’s
normal operational parameters [129]. Operational pa-
rameters are the horizontal axis N of the metrics state
space described in Section 4. The resilience of the un-
derlying system when challenged, consisting of a set of
parameters N, define normal, partially degraded, and
severely degraded operation. Understanding normal be-
haviour is a fundamental requirement for detecting chal-
lenges to normal operation.

P3. Threat and challenge models are essential to
understanding and detecting potential adverse events
and conditions. It is not possible to understand, define,
and implement mechanisms for resilience that defend
against, detect, and remediate challenges without such
a model.

P4. Metrics quantifying the service requirements and
operational state are needed to measure the operational
state N (in the range normal < partially-degraded <>

severely-degraded) and service state P (in the range ac-
ceptable +» impaired <> unacceptable) to detect, reme-
diate, and quantify resilience, as well as to refine future
behaviour. The set of parameters (N, P) and the way in
which they are combined as objective functions to de-
termine the scales (N,PP) of the two dimensional state
space are the fundamental basis for the measurement of
resilience R at a particular service level, leading to the
multi-level composition into overall network resilience
R described in Section 4.

P5. Heterogeneity in mechanism, trust, and pol-
icy are the realities that no single technology is appro-
priate for all scenarios, and choices change as time pro-
gresses. The emerging Future Internet will be a collec-
tion of realms [46] of disparate technologies [34], which
also define trust and policy boundaries across which
there is tussle [47]. Resilience mechanisms must not
only deal with this heterogeneity, but can also exploit
it by using diversity in mechanism as a defence, and by
providing self-protection mechanisms at realm bound-
aries.

2.2.2 Design Tradeoffs

The second set of principles describe fundamental trade-
offs that must be made while developing and analysing
a resilient system.

P6. Resource tradeoffs determine the deployment
of resilience mechanisms. The relative composition and
placement of these resources must be balanced to opti-
mise resilience and cost. Resources to be traded against
one-another include bandwidth, memory [116], process-
ing, latency [136], energy, and monetary cost. These can
either be viewed as resources contributing to the oper-
ational state N or as constraints that define the service
state IP. Of particular note is that maximum resilience
can be obtained with unlimited cost, consisting in part
of a full mesh of hardened overprovisioned links, but
there are cost constraints that limit the use of enablers
such as redundancy and diversity.

P7. Complexity of the network results due to the in-
teraction of systems at multiple levels of hardware and
software, and is related to scalability. While many of the
resilience principles and mechanisms increase this com-
plexity, complexity itself makes systems difficult to un-
derstand and manage, and thereby threatens resilience.
The degree of complexity must be carefully balanced in
terms of cost vs. benefit, and unnecessary complexity
should be eliminated.

P8. State management is an essential part of any
large complex system. It is related to resilience in two
ways: First, the choice of state management impacts
the resilience of the network. Second, resilience mech-
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service
requirements

self-protection

resource connectivity self-organising
bgr?;r\jzihr tradeoffs redundancy and autonomic
threat and complexity diversity adaptable
challenge models state multilevel
metrics management /context awarenes: evolvable
heterogeneity translucency
prerequisites tradeoffs enablers behaviour

Fig. 2 ResiliNets principles

anisms themselves require state and it is important
that they achieve their goal in increasing overall re-
silience by the way in which they manage state, re-
quiring a tradeoff among the design choices. Resilience
tends to favour soft, distributed, inconsistency-tolerant
state rather than hard, centralised, consistent state, but
careful choices must be made in every case, and it is the
measurement of resilience R that helps determine the
proper state management decisions.

2.2.83 Enablers

Seven principles are enablers of resilience that guide
network design and engineering. These are implemented
as resilience mechanisms at each level of the network
architecture, and come with the cost of implementa-
tion and deployment. The cost—benefit analysis of these
mechanisms using the techniques described in the rest
of the paper determine the applicability and degree to
which each should be used.

P9. Self-protection and security are essential prop-
erties of entities to defend against challenges in a re-
silient network. Self-protection is implemented by a num-
ber of mechanisms, including but not limited to mutual
suspicion, the AAA mechanisms of authentication, au-
thorisation, and accounting, as well as the additional
conventional security mechanisms of confidentiality, in-
tegrity, and nonrepudiation.

P10. Connectivity and association among com-
municating entities should be maintained when possi-
ble based on eventual stability, but information flow
should still take place even when a stable end-to-end
path does not exist based on the eventual connectivity
model [134], using DTN (disruption-tolerant network-
ing) techniques such as partial paths, store-and-forward
with custody transfer, and store-and-haul (store-carry-
forward).

P11. Redundancy in space, time, and information in-
creases resilience against faults and some challenges if
defences are penetrated. Redundancy refers to the repli-
cation of entities in the network, generally to provide

fault-tolerance. In the case that a fault is activated and
results in an error, redundant components are able to
operate and prevent a service failure. It is important
to note that redundancy does not inherently prevent
the redundant components from sharing the same fate,
motivating the need for diversity.

backbone
provider 1

q
Sl

7% Wwireless
WA access net

optical
[1access net

Fig. 3 Diversity in path and mechanism

P12. Diversity is closely related to redundancy, but
has the key goal to avoid fate sharing. Diversity in
space, time, medium, and mechanism increases resilience
against challenges to particular choices, and consists of
providing alternatives so that even when challenges im-
pact particular alternatives, other alternatives prevent
degradation from normal operations. Diverse alterna-
tives can either be simultaneously operational, in which
case they defend against challenges [124], or they may
be available for use as needed to remediate. The pro-
vision and analysis of diversity for resilience and the
relationship between logical topologies and physical di-
versity is discussed in considerably more detail in Sec-
tions 3-5. Figure 6 shows an example of several kinds of
diversity. Communicating subscribers are multihomed
to service providers that are diverse in both geography
and mechanism. Protection against a fibre cut is pro-
vided by the wireless access network; protection against
wireless disruptions such as weather or jamming is pro-
vided by the fibre connection.

P13. Multilevel resilience [99] is needed in three or-
thogonal dimensions: Protocol layers in which resilience
at each layer provides a foundation for the next layer
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above; planes: data, control, and management; and net-
work architecture inside-out from fault-tolerant com-
ponents, through survivable subnetwork and network
topologies, to the Global Internet including attached
end systems and applications. The multilevel aspect of
resilience analysis is discussed in Section 4.2.6.

P14. Context awareness is needed for resilient nodes
to monitor the network environment (channel condi-
tions, link state, operational state of network compo-
nents, etc.) and detect adverse events or conditions (e.g.
[80]). Remediation mechanisms must take the current
context of system operation into account.

P15. Translucency is needed to control the degree
of abstraction vs. the visibility between levels (layer,
plane, and system organisation). An opaque level bound-
ary can hide too much and result in suboptimal and im-
proper behaviour based on incorrect implicit assump-
tions about the adjacent level [136,122]. Thus it is im-
portant that level boundaries be translucent in which
cross-layer control loops allow selected state to be ex-
plicitly visible across levels; dials expose state and be-
haviour from below; knobs influence behaviour from
above [34].

2.2.4 Behaviour needed for Resilience

The last group of three principles encompass the be-
haviours and properties a resilient system should pos-
sess. These properties are inherently complex, and their
cost and benefit to resilience is measured by the analy-
sis techniques described in the rest of this paper.

P16. Self-organising and autonomic behaviour [53,
35] is necessary for network resilience that is highly
reactive with minimal human intervention. A resilient
network must initialise and operate itself with minimal
human configuration and operational management. Ide-
ally human intervention should be limited to that de-
sired based on high-level operational policy.

P17. Adaptability to the network environment is es-
sential for a node in a resilient network to detect, reme-
diate, and recover from challenges. Resilient network
components need to adapt their behaviour based on
dynamic network conditions, in particular to remedi-
ate from adverse events or conditions, as well as to
recover to normal operations. At the network level, pro-
grammable and active network techniques enable adapt-
ability [38,82].

P18. Evolvability is needed to refine future behaviour
to improve the response to challenges, as well as for
the network architecture and protocols to respond to
emerging threats and application demands. Refinement
of future behaviour is based on reflection on the inner
strategy loop D2R?: the defence against, detection, and

Fig. 4 Rain intensity in millimeter wireless mesh network

remediation of adverse events or conditions and recov-
ery to normal operation. Furthermore, it is essential
that the system can cope with the evolution and ex-
tension of the network architecture and protocols over
time, in response to long term changes in user and appli-
cation service requirements, including new and emerg-
ing applications and technology trends, as resource trade-
offs change, and as attack strategies and threat models
evolve.

Weather disruption-tolerant networking [80] provides
an example of the application of these principles to in-
crease network resilience. In this domain, precipitation
such as thunderstorms challenge areas of a millimeter-
wave mesh network. In this case the main challenge
model is area-based attenuation due to precipitation.
Context-awareness of the precipitation as measured by
radar echo intensity (Figure 4) is used by translucent
cross-layer controls to allow predictive routing to adapt
such that flows are not disrupted by the challenge. This
is enabled by the redundancy and spatial diversity of
the mesh network.

3 Topology Generation

A key aspect of understanding and analysing network
resilience is to accurately represent the topology of the
existing network, as well as to be able to generate rep-
resentative alternative topologies to evaluate resilience
properties, and to be the basis of comparing candi-
date mechanisms. These alternative topologies may be
based on a particular existing network, for example ex-
ploring alternative link interconnections among existing
nodes or augmenting with additional components to in-
crease resilience. Alternatively, we may wish to explore
the resilience of entirely new network deployments, but
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(a) L3 IP PoP interconnection

(b) MPLS backbone

(c) Physical fiber links

Fig. 5 Comparison of logical overlay and physical topologies for Sprint

grounded in a understanding of the structure of real
networks constrained by cost, location, and practical-
ity of infrastructure deployment. The rest of this sec-
tion will explore these issues and introduce the topology
generator KU LoCGen (The University of Kansas Lo-
cation and Cost-Constrained Topology Generator) [81]
and the topology viewer KU-TopView (The University
of Kansas Topology Viewer and Combiner) [22].

3.1 Logical vs. Physical Topologies

The majority of the existing body of research is based
on logical topology models focusing on the generation
of either AS-level [149,100] or router-level [100] topolo-
gies. In an AS-level topology, each Internet autonomous
system (AS) is represented as a single node and the
BGP (border gateway protocol) connectivity between
the ASes represents the graph edge connectivity; this
models the highest-level service provider structure of
the Internet. While most of the approaches aggregate
the intra-AS topology to a single node, some do con-
sider the complexity or structure within a given AS as
a mesh.

In the router-level L3 (layer-3) graph, each IP router
is represented as a vertex and a logical IP link between
a pair of routers forms the edge between the vertices.
An example of the Rocketfuel-inferred [131] Sprint L3
topology is shown in Figure 5a.

One of motivating factors for the study of logical
topologies is that the L3 protocols such as IP, IGPs
(interior gateway protocols), and BGP only see L3 con-
nectivity of the Internet. Furthermore, the majority
of inference mechanisms [73] are only able to collect
data on the the router-level connectivity of commer-
cial networks. To date, results from topology modelling
have been used for evaluating various aspects of net-
works [36] including security, performance, traffic mod-
eling and engineering, protocol development and analy-
sis, as well as evaluation of numerous other algorithms.

However, an edge between a pair of vertices almost
never corresponds to a direct physical link without any
intermediary lower layer nodes due to the underlay-
ing structures that provide IP connectivity, including
L2.5-traffic-engineering underlays such as MPLS (mul-
tiprotocol label switching — Figure 5b [19]), L2 struc-
ture such as SONET/SDH (synchronous optical net-
work / synchronous digital hierarchy) rings including
cross connects and ADMs (add-drop multiplexors), and
fibre links interconnected by regenerators and ampli-
fiers (Figure 5¢ [85]). Hence, neither the AS-level nor
router-level graphs represents the actual physical con-
nection between nodes, as can be seen in Figure 5c¢ for
the Sprint network. In this example, the San Jose —
Kansas City IP interconnection might go through the
Stockton or Anaheim — Ft. Worth MPLS nodes, which
follows a geographic fiber path significantly different
from that implied by either the L3 or L2.5 graphs.

While L3 topologies are useful for modelling the the
resilience of L3 services such as BGP and IGP routing,
they are not sufficient to understand the resilience of the
physical infrastructure to a number of challenges, in-
cluding large-scale disasters and attacks against the in-
frastructure, explored in Section 5. Furthermore, since
it is possible for two distinct IP paths of different ser-
vice providers to share the same physical conduit, it
is difficult to understand and engineer the resilience of
the network by assuming that IP links correspond to
physical links. Without an understanding of the geo-
graphic location of physical network nodes and links
and their correspondence to logical links, it is not pos-
sible to know if the logical components share fate, as
was the case in the Baltimore tunnel fire [138] in which
many logically distinct links failed at the same time
when all the fibre running through the tunnel melted.

Therefore, we argue that resilience evaluation of a
network must begin with the physical topology and ge-
ography because it is the physical topology that ulti-
mately determines the ability to survive infrastructure
failures. Service and network dependability and per-
formability in the face of failures is highly dependent
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on the physical topology. For example, in the case of
recovery after a large-scale disaster, it becomes the sur-
viving physical infrastructure that drives traffic man-
agement decisions. This leads to the need for realistic
topology models and generators that reflect the physi-
cal and geographic structure of the network, as well as
the logical topology overlays.

We note that one of the reasons for the previous lack
of interest in physical layer topologies may in part be
the abstraction of protection mechanisms. For example,
link-level protection such as SONET/SDH automatic
protection switching (APS) [57], p-cycles [72], and f-
cycles [106] provide fault-tolerant masking of uncorre-
lated failures, and shared-link risk groups (SLRGs) [137]
provide topological diversity, but not necessarily geo-
graphic diversity. These mechanisms do not solve the
fate-sharing problem nor provide resilience against cor-
related failures and attacks.

One of the fundamental challenges in developing a
physical topology model is the lack of real data for val-
idation of the models. The physical topology of com-
mercial networks including the Internet are not readily
available. Previous research has considered several in-
ference mechanisms to determine geographic node lo-
cations and physical link distances [64,113,88], but de-
spite these efforts, the inference of physical topologies
remains an open problem. There are, however, a few
educational and research networks such as GEANT?,
NLR (National LambdaRail), and Internet2 for which
the physical topology is available for validation, but un-
fortunately research networks are generally significantly
smaller than large commercial ISPs. It should be noted
that physical topology generation and analysis is fun-
damentally an intra-domain issue. Hence, we can inde-
pendently validate a model against an individual ISP
physical topology.

3.2 Path Diversity

As described in Section 2.2.3, a key enabler to resilience
is diversity [124,123,120] such that when challenges im-
pact part of the network, other parts do not share fate
and are able to continue communicating. In the case of
topological resilience, it is important that diverse phys-
ical paths exist, and that end-to-end communication is
able to exploit this capability and choose paths that are
unlikely to experience correlated failures. To this end,
we define a measure of diversity (introduced in [124];
further developed in [123]) that quantifies the degree to
which alternate paths share the same nodes and links.
Note that in the WAN (wide-area network) context in
which we are concerned with events and connections
on a large geographic scale, a node may be thought of

as representing an entire PoP (point-of-presence) area,
and a link as the physical bundle of fibers buried in a
given right-of-way. This distinction between WAN and
LAN (local-area network) component identifiers affects
only the population of the path database, not the usage
of the diversity metric.

3.2.1 Diversity Metric

Given a (source s, destination d) node pair, a path P
between them is a vector containing all links L and
all intermediate nodes N traversed by that path P =
LUN and the length of this path |P| = |L|+|N| is the
combined total number of elements in L and V.

Let the shortest path between a given (s, d) pair be
Py, Ly be a vector containing the set of links traversed
by Py, and Ny be a vector containing the nodes which
lie on Py. Then, for any other path P between the same
source and destination, we define the diversity function
D(x) with respect to Py as:

The path diversity has a value of 1 if P, and P, are
completely disjoint and a value of 0 if P, and P, are
identical. For two arbitrary paths P, and P, the path
diversity is given as:

Fig. 6 Shortest path Py and alternatives P; and Ps

It has been claimed [109] that measuring diversity
(referred to as novelty) with respect to either nodes or
links is sufficient, however we assert that this is not the
case. Figure 6 shows the shortest path, Py, along with
the alternate paths P; and P, both of which have a
(link) novelty of 1. However, given a failure on node 1,
both Py and P, will fail. In our approach, D(P) = %,
which reflects this vulnerability. P; on the other hand
has both a novelty of 1 and a diversity of 1, and does not
share any common point of failure with Fy. Similarly,
the wavelengths or fibres from multiple nodes may in
fact be shared by a single physical conduit such as was
the case in the Baltimore tunnel fire [138], resulting
in a single point of failure, thus illustrating the need
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for including both nodes and links into the diversity
measure.

3.2.2 Effective Path Diversity

Effective path diversity (EPD) is an aggregation of path
diversities for a selected set of paths between a given
node-pair (s, d). To calculate EPD we use the exponen-

tial function
EPD =1 — ¢ ksd

where kg4 is a measure of the added diversity defined
as

k
ksd = Z Dmin(Pi)
=1

where Dpin(P;) is the minimum diversity of path 4
when evaluated against all previously selected paths for
that pair of nodes. \ is an experimentally determined
constant that scales the impact of ksq based on the util-
ity of this added diversity. A high value of A (> 1) indi-
cates lower marginal utility for additional paths, while
a low value of )\ indicates a higher marginal utility for
additional paths. Using EPD allows us both to bound
the diversity measurement on the range [0,1) (an EPD
of 1 would indicate an infinite diversity) and also re-
flect the decreasing marginal utility provided by addi-
tional paths in real networks. This property is based on
the aggregate diversity of the paths connecting the two
nodes.
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Fig. 7 Total graph diversity vs. number of paths selected

3.2.8 Path Selection

We identify three different criteria for choosing a set of
diverse paths for a given node pair: number of paths, di-
versity threshold, and stretch limit. The objective in the

first mode is to find k£ maximally diverse paths. We first
find the shortest fully disjoint paths, and if additional
paths are required we continue finding paths that add
maximum diversity as calculated using the equation for
ksq. The second mode selects as many maximally di-
verse paths as are required to achieve the requested
EPD. Finally, the third mode selects all maximally di-
verse paths with stretch less than the stretch limit. In
all modes, the set of maximally diverse paths are found
using the Floyd-Warshall algorithm with modified edge
weights [33]. In this algorithm, only those paths are
used that increase the EPD for the node pair in ques-
tion. Recall that only paths with one or more disjoint
elements (links+nodes) will result in non-zero Dy, and
consequently increase EPD.

8.2.4 Measuring Graph Diversity

The total graph diversity (TGD) is simply the average
of the EPD values of all node pairs within that graph.
This allows us to quantify the diversity that can be
achieved for a particular topology, not just for a par-
ticular flow. For example a star or tree topology will
always have a TGD of 0, while a ring topology will have
a TGD of 0.6 given a A of 1. In Figure 7 we compare
three different real network topology TGD plots with
those of four regular topologies (full-mesh, Manhattan
grid, ring, and star). The Sprint and AT&T topologies
are inferred from Rocketfuel [4]; GEANT?2 [9] nodes are
the actual location.

Table 1 Network statistics
[ H Nodes [ Links [ Avg. deg [ TGD ]

full-mesh 20 190 19.00 0.99
grid 25 40 3.20 0.75
AT&T 25 92 7.36 0.71
Sprint 27 136 10.00 0.70
GEANT2 34 102 6.00 0.58
ring 25 25 2.00 0.39

star 25 24 1.92 0.00

Table 1 shows the number of nodes and links, aver-
age node degree, and TGD with £k = 10 and A = 0.5
for each network [123]. Of importance here is that the
average node degree alone is not sufficient to indicate
the diversity of a network in real-world cases, although
it may be used to rank regular synthetic topologies. We
see that while Sprint has a higher average node degree
than AT&T, AT&T is slightly more diverse.

We have produced the Web-based KU-TopView net-
work mapping tool [22] to visualize these topologies
with screen-shots of the Sprint physical and logical topolo-
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Fig. 9 Sprint layer-3 map in KU-TopView

gies shown in Figures 8 and 9. KU-TopView also pro-
vides adjacency matrices to be used by analysis tools
such as KU-CSM described in Section 5.

Here we note that for diversity to make sense in
the graph context it should be computed considering
only path components (nodes and links) at the level
of network hierarchy for which the diversity value is
desired. For example, in computing the diversity of a
service provider’s backbone, only core nodes should be
considered, otherwise the comparatively large number
of subscriber nodes (typically stubs) will artificially re-
duce the calculated diversity. We also note here that
the diversity measure is designed such that it does not
penalize longer paths in favor of shorter paths, meaning
that graph diameter and average path lengths are inde-
pendent metrics that should be considered in addition
to the diversity metric.

Fig. 10 Geographic diversity: distance d and area A

8.2.5 Geographic Diversity

The previous EPD and TGD measures consider the
sharing of components, but do not capture the geo-
graphic characteristics necessary for area-based chal-
lenges such as large-scale disasters (simulated in Sec-
tion 5) or to prevent the geographic fate sharing of
distinct links in the same conduit as in the Baltimore
tunnel fire. Therefore we are augmenting the diversity
measures with a minimum distance between any pair
of nodes along alternate paths, and as the area inside
a polygon or set of polygons, the borders of which are
defined by a pair of alternate paths, as shown in Fig-
ure 10. Thus, it should be possible to specify diverse
paths among a set of candidates with a given degree
of sharing and distance metric EPD(d) constrained by
stretch, and measure the geographic area between the
paths EPD(A) as well as to measure the diversity in-
herent in a graph across all paths TGD(d, A).

3.3 Hierarchical Topology Model

Even though the majority of existing research deals
with logical topologies, there is a significant overlap in
generation models with the physical topology models
needed for the analysis of reslience. Furthermore, we
can draw upon the lessons learned through the evolu-
tion of topology research [73].

8.3.1 History of Models

The field of topology analysis and generation goes as
far back as 1950s [60], and has been studied in var-
ious fields including computer science, mathematics,
and physics [43]. Pre-power-law studies include random
models such as Waxman [147] and hierarchical models
such as Tiers [37] and transit-stub [151], in which the
focus was on recreating the structure of networks.

Later, it was observed that the L.3 degree-distribution
in the Internet follows three power laws [63], followed by
work that enhanced these power laws, theorised the un-
derlying causes [30,128], and developed models to gen-
erate graphs that faithfully reproduced these degree-
based properties. Since structure-based models such as
hierarchical did not strictly produce these properties
in the graphs, they were discarded as not being repre-
sentative of Internet topology. Hence power law in the
degree distribution was considered a necessary, and in
some studies sufficient, condition for the representative-
ness of the graphs.

In the post power-law era, further research and anal-
ysis was conducted to better understand observed prop-
erties in inferred topologies as well as the limitations
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of inference mechanisms and the factors that lead to
such properties [39,44,61]. The latest studies have em-
phasised the need to model the process of network de-
velopment instead of replicating properties in random
graphs [90,25].

Emphasis is increasingly placed on reconciling the
differences between purely analytical models and prac-
tical design principles. It was observed that Internet
does not have an “achilles heel” [55,25] of a purely
power-law graph and that the processes that led to
Internet properties are quite complex involving vari-
ous optimisations that are characteristics of real net-
works [24,39]. The latest understanding of the research
community is that the purely analytical models are not
very representative of actual networks and are hence
not capable of producing realistic topology models. Sev-
eral heuristic methods that incorporate real world op-
timisations and tradeoffs have been proposed [55,146].

Specifically, the method of highly-optimised tolerance [39,

24,25] proposes network topology as a result of resilience
optimisation with non-generic, highly engineered con-
figurations.

Backbone network — —@—

Access network —_——
Subscriber network ——e——

Fig. 11 KU-LoCGen hierarchical topology model

8.8.2 Hierarchy in KU-LoCGen

The goal of KU-LoCGen (The University of Kansas Lo-
cation and Cost-Constrained Topology Generator) is
to provide a flexible framework that allows for an n-
level hierarchical, modular structure with level-specific
graphs, constrained by cost, population, and infrastruc-
ture location. Furthermore, the graph models used at
each level differ significantly. These vary from closed-
form general-purpose mesh models (e.g. Waxman [147])
typical in backbones, to pre-structured models such as
rings and trees typical in access networks based on par-
ticular technologies such as SONET/SDH rings and

HFC (hybrid-fibre coax) trees, to a modified power-
law preferential attachment of subscribers to access net-
works. Figure 11 shows an example of a topology mod-
elled by KU-LoCGen representing a mesh backbone at
level 1, various access topologies at level 2, and prefer-
ential attachment of subscribers at level 3.

The current KU-LoCGen implementation generates
three levels representing the backbone, access, and sub-
scriber networks whose geographic distribution is rep-
resented by ¥, ¥,, ¥ respectively. Furthermore, the
number and geographic spread of nodes at any given
level is strongly correlated to the higher level nodes in
the hierarchy as discussed below. The backbone node
(level-1) distribution model ¥, supports three differ-
ent location constraints including fixed geographic po-
sitions based on known point-of-presence geolocations
of existing networks, user defined location, and a ran-
dom distribution as discussed below.

The number of access networks (level-2) N(i) are
chosen based on a uniformly distributed random vari-
able. N = U(Tmin, Mmax), where npi, and ngax are the
lower and upper limits on the number of access net-
works per backbone node. The N(i) access networks
are distributed around a given PoP using a Gaussian
distribution: ¥, = N|uy, 2], where yu, represents the
PoP location and o2 is the variance. The subscriber net-
works are distributed normally: ¥ = N|us,02], where
ps represents the access network location and o2 is the
variance. Obviously, the variance determines the geo-
graphical extent and the spread of the subscribers. Ad-
ditionally, the variance of each access network may vary
according to the size and location of the access network
as well as the PoP to which the access network is con-

nected: 02(i) o Nl(i)

The number of access nodes M (i) in the i’ access
network of the j** backbone node is based on the dis-
tance of the access network from the backbone node
relative to the other access networks connected to the
same backbone node. The number of nodes in the access
network is given as

max(dy);t =1,2,...N(j)
d;

M(’L) = X Mmin

where d; is the distance of the " access network and
M pin is the minimum number of access networks de-
fined per PoP. Furthermore M () is also the upper bound
to a predefined maximum value of M,.x. The access
network nodes are then uniformly distributed in a cir-
cular region of radius r around the first access node.
Therefore ¥, = U(0, 7). The number of subscribers in
an access network is directly proportional to the size of



12

James P.G. Sterbenz et al.

the access network;

max(M(5));7=1,2,..N
where Spax is the predefined limit on the maximum
number of subscribers per access network.

3.4 Location Constraints

The physical topology of networks is highly constrained
by the geographic location of its components. It has
also been observed that the router-level topology shows
a very high correlation to the population density [88].
Moreover, the probability of link deployment is strongly
related to the distance between the nodes. Geographic
distance-based models such as Waxman accurately model

the link distribution when considering location constraints

[88].

Furthermore, the ability to model area-based chal-
lenges such as large-scale disasters depends on geographic
node placement rather than the random placement of
traditional topology generators. Examples of applying
area-based challenges to geographic topology models
will be shown in Section 5. Our ultimate goal is to un-
derstand the graph-theoretic properties that relate to
network resilience [139], including spatial diversity that
requires node geolocation information. As described in
Section 3.2.5, nodes may be located such that total
graph diversity meets a constraint TGD(d).

Generating topologies with location constraints can
be done in two ways. We can use the known location
of existing infrastructure to geographically place nodes
(for example Rocketfuel [131] for backbone node place-
ment that generally corresponds to PoP locations). In
this case we synthetically generate links under cost con-
straints, as described later. Alternatively, we can use
population density to drive node placement, as described
next, additionally constrained to meet graph theoretic
properties such at clustering coefficient and TGD(d).

We are consider both the absolute distribution of
the nodes as relating to population density and the dis-
tribution of nodes with respect to each other. The use
of a hierarchical model enables us to achieve this by
defining a separate structure or growth model for each
level. While the position and distribution of the level-1
(backbone PoP) nodes is based on the population dis-
tribution (or other location constraints such as existing
PoPs or fibre infrastructure), the distribution of the
access networks and access network nodes requires fur-
ther research to determine the distributions that model
it accurately.

3.4.1 Population Constraints

The physical topologies of networks are highly con-
strained by the geographic location of its components,
which in turn are determined by two factors. The loca-
tion of nodes is determined primarily by the population
centres that links connect. The paths of links are further
constrained by topographic features the minimise the
deployment cost of fibre-optic cables; long-distance runs
are typically laid along railways, motorways, pipelines,
and transmission lines.

One of the goals of our geographically-constrained
topology generator is to use realistic constraints to de-
duce node placement. This can be used either to com-
pare the resilience of existing networks to alternatives
in developed areas such as the US and Europe, or to
predict where new infrastructure should be deployed in
developing nations.

We use the k-means clustering algorithm on the
1 km? gridded population density data sets from CIESIN
[42] to determine optimal locations for backbone PoP
placement [75]. K-means is an iterative clustering method
that works in two phases. The goal is to minimise the
sum of the distances between all data points to cluster
centres for all clusters. The initial selection of the clus-
ter centres is random. The first batch phase recomputes
the cluster centres by re-associating each data point to
its nearest cluster centre. This phase provides an ap-
proximate but fast computation of cluster centres. The
second on-line phase uses the output of the batch phase
as the initial cluster centres and re-associates points to
a different cluster only if doing so reduces the sum of
distances. Cluster centres are recomputed after each re-
association. Each iteration requires one pass through all
data points. This is computationally complex and time
consuming phase, especially for such large data sets.

« actual PoP
x generated PoP

Fig. 12 Relative node locations for combined ISPs in USA

The two inputs to the algorithm are population data
and the number of cluster centres. In this example,
we consider multiple ISPs to aggregate across tier-1
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e capital city
o other major city
% generated PoP

(a) Predicted PoPs (20)

Fig. 13 Cluster centres for Africa

providers, so as to not neglect certain parts of the US
that may be under-served by a particular ISP. Fig-
ure 12 shows a comparison of 112 PoPs generated using
our population based model with the existing 112 com-
bined Rocketfuel-inferred [131] L3 PoP cities of Sprint,
AT&T, and Level3.

Sprint

Level 3 ——

AT&T
Combined USA

CCDF

0 50 100 150 200 250 360
offset distance [km]

Fig. 14 CCDF of offset distance

We quantify the distance between inferred PoP lo-
cations and population based cluster centres as the off-
set distance for a pair of nodes. The complementary
cumulative distribution function (CCDF) of the offset
distance for individual and combined ISPs is shown in
Figure 14. Note that with combined ISPs, almost 90%
of the nodes generated are within 50 km offset distance;
only a very small percentage of nodes are outliers.

Next we consider an under-developed area that does
not yet have significant network infrastructure. We gen-
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(b) Actual population density chart [42]
(reprinted with permission)

erate the optimal location of backbone PoPs that could
be used by an ISP desiring to have a continent-wide
topology. Figure 13a shows the predicted location of
20 PoPs for Africa, next to a population-density map
(Figure 13b) [23] for visual comparison. Since there is
no continent-wide ISP in Africa, we cannot compare
predicted node locations with existing infrastructure.

3.4.2 Technology Penetration

The other fundamental aspect governing the location
of the PoPs is technology penetration. The location of
backbone PoPs is highly dependent on the number of
Internet users in a given area. We denote the technology
penetration factor as -y, defined as the fraction of Inter-
net users to the total population in a particular area,
and assume this factor is uniform for a developed re-
gions such as the US and Europe: y=1. This factor has
particularly significant influence on a developing coun-
try such as India, where technology penetration is not
homogeneous across all areas. Hence, placing network
resources solely based on the population density data
set would not lead to a realistic network deployment.
India is highly populated in the northern belt of the
river Ganges. However, the number of Internet users
for this region is small compared to the absolute popu-
lation. We consider the inferred topology of the VSNL
network in India [131], which has only five PoPs located
in Delhi, Mumbai, Hyderabad, Bangalore, and Chennai.
The clustering algorithm is run on both on the absolute
population data set as well as the effective v weighted
data. Figure 16 shows that four of the predicted PoPs
match VSNL closely. However, instead of a PoP near
Chennai, it is placed near Patna for two reasons: Patna
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(a) Sprint physical topology

(b) Sprint with railway mainlines

(c) Sprint with Interstate highways

Fig. 15 Comparison of Sprint fiber topology and main transportation routes

is much denser in population than Chennai and the PoP
placed near Bangalore is close enough to Chennai for
our algorithm to place another PoP.

The quarterly report released by Telecom Regula-
tory Authority of India [143] is used to get the state-
wide list of broadband subscribers in India. Technology
penetration is incorporated into our model by weight-
ing the population of each grid in an area by the corre-
sponding v and then clustering the resulting data set.
After incorporating ~, the 4 PoPs which matched ear-
lier get closer to the real locations, while the one in
Patna moves to Kolkata as it is one of the metropolitan
areas with a high number of Internet users.

e actual city location
% generated PoP no y

Fig. 16 Illustration of v factor for India

8.4.8 Link Path Constraints

Given the prediction of major nodes determined by
population distributions, actual node placement should
be further influenced by the location of existing network
infrastructure, including fibre routes. To model this in-
frastructure and potential new deployment opportuni-
ties, we are currently adding existing fibre paths, rail-
way mainlines, and Interstate freeways to our US ad-
jacency matrices. This will permit us to add the ad-

ditional step of “snapping-to-grid” nodes to infrastruc-
ture, and should improve the accuracy of node place-
ment over purely population based. For example, in
Figure 12 there are a number of nodes in the sparsely-
populated Western US that would snap to larger cities
at fibre junctions and be located even more closely to
existing PoP cities. Figure 15 shows the relationship of
the Sprint physical fibre topology to railway mainlines
(based on [121]) and Interstate freeways (based on [21])
in the US.

3.5 Cost-Constrained Connectivity

Given a set of node locations, either based on existing
networks or predicted as discussed previously, we want
to explore the resilience of alternative interconnection
topologies. This only makes sense under realistic cost
constraints, otherwise all networks would be full meshes
— maximum resilience can be obtained with unlimited
cost, but this is not practical. Therefore, our model uses
cost constrained connectivity models to generate feasi-
ble topologies.

Economic factors shape physical level infrastructure
[25]. The resilience and survivability of networks is al-
most always limited by the cost, therefore, realistic mod-
els must incorporate cost constraints. However, this poses
a significant challenge due to the lack of standard cost
functions for network infrastructure. Furthermore, the
cost function is not only location and time dependent,
but also depends on the level within the network hier-
archy.

Given the impracticability of a universal cost func-
tion, we use modular cost functions that are highly tun-
able and allow network designers to select as well as de-
fine new cost functions based on fundamental variables
such as fixed and variable costs per link and per node.
Our baseline model assumes that the cost of all nodes in
the backbone network is the same Cy,. The link cost C; ;
of a link ¢, j is calculated as Cj ; = f; j+v; j X d; ; where
fi; is the fixed cost associated with terminating the
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link, v; ; is the variable cost per unit distance for link
deployment, and d; ; is the length of the link. For sim-
plicity we generally choose v; ; = d x v;,; where d is the
average link length of the network. The level-1 nodes
in our model are connected using a cost-constrained
Waxman model, which is a reasonable representation
of link connectivity in a backbone network [88]. While
it is generally agreed that backbone networks are mesh-
like [55], there is some contention as to exact relation-
ship between link probability and its distance; some
works claim that this is exponential [88], but others
claim that it is linear [150].

According to the Waxman model [147] the proba-
bility that two nodes v and v have a link between them
is given by

—d(u,v)

P(u,v) = e La

where 0 < o, 8 < 1 and L is the maximum distance be-
tween any two nodes. The Waxman parameters o and
[ are controlled by the cost. A high value of « corre-
sponds to a high fraction of short to long links and (3
is directly proportional to the link density; d is the Eu-
clidian distance between the two nodes. The Waxman
model as traditionally applied begins with uniform node
distribution, but we use the location constrained node
locations for a realistic backbone topology model.

Figure 17 shows an example level-2 topology gener-
ated by our model using the 27-node topology (equal
to the number of Sprint PoPs) with population-based
node clustering and random node placement about the
PoPs for the 2nd level. The objective is to generate al-
ternative realistic topologies to compare their resilience
with one another as well as against existing network de-
ployment. This motivates the need to for metrics and
a methodology to quantify resilience, described in Sec-
tion 4.

251

L I
50 60 70 80 90 100 110 120

Fig. 17 Sample 2-level topology using 27 nodes

Table 2 Offset distance with existing PoPs in km

[ Network (PoPs) | Mean | o [ Min. [ Max.
Sprint (27) || 542 | 45.3 | 2.6 | 1636

AT&T (106) 26.5 37.3 1.1 265.2

Level 3 (38) 43.4 31.7 9.6 118.6
GEANT2 (34) 101.5 54.1 | 20.2 252.3
Ebone (27) | 56.3 | 27.0 | 17.7 | 131.1

Tiscali (47) 34.8 22.3 2.47 80.6

VSNL (5) 26.7 34.9 2.6 265.1

Table 2 is a summary of our results pertaining to the
locations of PoPs for various ISPs in the US, Europe,
and India [75]. Noted that all of them are Rocketfuel-
inferred topologies except for the European GEANT?2 [9]
research network. Our predictions match very well with
ISPs with large infrastructure. For example, in the case
of AT&T, the mean separation between real and clus-
tered nodes is 26.5 km and the closest match is with an
offset of 1.1 km.

3.6 Example Synthetic Network Graph

In this section, we demonstrate the ability to generate a
realistic 27 node topology based on US population den-
sity data set. We use a cost-constrained Waxman model
to connect the backbone nodes. The objective is to go
from realistic node locations to understanding realistic
topologies and evaluate resilience of synthetic graphs.
Figure 18 shows the backbone topology generated by
our model.

\V/
6

Fig. 18 Synthetic topology for 27 nodes

Note that we do not claim that this topology is re-
silient, but we evaluate the graphs by comparing vari-
ous metrics in Table 3 and show that the graph metrics
of synthetically generated topologies are comparable to
realistic topologies, if not better.

We compute betweenness, average node degree and
clustering coefficient metrics of the graph. The between-
ness metric is the number of shortest paths through a
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Table 3 Topological characteristics of sample networks

Network Topology H Sprint PoPs Synthetic ‘
Number of nodes 27 27
Number of edges 68 71
Maximum degree 12 14
Average degree 5.04 5.23
Clustering coeff. 0.43 0.28
Network diameter 6 6
Average hop count 2.44 2.22
Node betweenness

(max /min /avg) 144/28/72 124/1/32
Link betweenness

(max /min /avg) 72/2/12.6 35.1/2.9/11.3

particular node or link [97]. A high value of between-
ness (for example, average node betweenness of 72 for
Sprint topology) indicates a high stress level. This in-
dicates presence of more critical nodes in a graph. An
average node betweenness value of 32 for the gener-
ated synthetic topology implies uniform stress levels
for most nodes. Similar reasoning applies for link or
edge betweenness metric. A higher average node de-
gree value generally indicates that a graph is better
connected and is more robust [97]. We observe that av-
erage node degrees for both graphs are almost equal.
Clustering coefficient, almost same for both topologies,
is the measure of how well neighbors of a node are con-
nected. The other metrics for both topologies compare
well. The ability to generate graphs with specified re-
silience properties such as TGD(d) is a key part of our
future work.

4 Analytical Resilience Framework

This section describes a new analytical framework to
evaluate network resilience based on a two-dimensional
state space: the horizontal axis representing the oper-
ational state of the network and the vertical axis the
service delivered. The resilience of a network is quan-
tified as the trajectory through the state space as the
network is challenged by failures, attacks, or large-scale
disasters. We show that for particular scenarios, and at
particular service levels, we can indeed characterise the
resilience with a single number given by the area under
the resilience trajectory.

4.1 Background

The earliest works in fault tolerance include the 1956
Moore and Shannon paper [108] on reliable circuits and
the Peirce [118] and Avizienis [27] publications on fault-
tolerant computing. The initial work on reliability and
fault tolerance was focused on the design of computing

systems [96]. In 1974, one of first resilience works in
communication networks was presented [65] as the sur-
vivability analysis of command and control networks
in the context of military systems. The inability to de-
sign systems with sufficient redundancy to overcome all
failures was realised in late 1970s in the context of fault-
tolerant computing systems [32,114,95]. Hence the con-
cept of degradable systems was introduced in which the
system has at least some degraded performance under
the presence of challenges without failing completely.
Markov models are used to evaluate the performance
and reliability of the degradable system [78,101,69].
Meyer [101] first coined the term performability as the
probability that the system will stay above a certain ac-
complishment level over a fixed period of time [74]. Un-
til then, reliability and performance of communication
networks were treated separately. Huslende [78] defined
performance as the second dimension of the classical re-
liability, thereby defining the reliability of a degradable
system as the probability that the system will operate
with a performance measure above certain threshold.
Since then there have been a number of rigorous def-
initions of survivability, reliability and availability [59,
86,71,105]. Existing research on fault-tolerance mea-
sures such as reliability and availability targets single
(or at most several) instances of random faults, such
as topology based analysis considering node and link
failures [91,92,26,83].

Frameworks to characterise survivability were also
developed in specific contexts, such as for large-scale
disasters [91,92], vulnerabilities under the presence of
DDoS attacks [119,76], and in conjunction with net-
work dynamics [86,68,104]. The T1A1.2 working group
defines survivability [141,142] based on availability and
network performance models; later approaches have used
this approach to quantify survivability [94,77,144]. In
this paper, we quantify network resilience as a measure
of service degradation in the presence of challenges that
are perturbations to the operational state of the net-
work.

4.2 Metrics Framework

In this section, we present a framework to quantify net-
work resilience in the presence of challenges using func-
tional metrics [79,103], beginning with a brief overview
of our approach. Recall that we define resilience the
ability of the network to provide and maintain an ac-
ceptable level of service in the face of various faults and
challenges to normal operation. The major complexity
in resilience evaluation comes from the varied nature of
services that the network provides, the numerous lay-
ers and their parameters over which these services de-
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pend, and the plethora of adverse events and conditions
that present as challenges to the network as a whole.
This complexity renders an exhaustive resilience anal-
ysis intractable. Our approach simplifies the resilience
evaluation process by using two novel methods. First,
we isolate the impact of challenges at each layer in the
network by evaluating resilience at each service-layer
boundary, thereby avoiding a continually increasing pa-
rameter set as we move up the network layers. Secondly,
we quantify resilience as a (negative) change in service
corresponding to a (negative) change in the operating
conditions at any given layer [103]. Therefore resilience
is characterised as a mapping between the network op-
eration and service, wherein the operation is affected
by challenges, which in turn may result in degradation
of the service at the servcie-layer boundary. In other
words, instead of evaluating the impact of each chal-
lenge or attack separately, which leads to an intractable
number of cases, we focus on quantifying the service to
varying operational conditions. Given the right set of
metrics, the operations can always be defined such that
most challenges manifest as perturbations in these oper-
ational metrics. We now present the formal framework.

Operational State N

Normal
Operation

Severely
Degraded

Unacceptable

Service Parameters P

/"O

Fig. 19 Resilience state space N x P

Acceptable

4.2.1 Operational State N

The first step in our framework is to quantify the op-
erational state (the givens) at any layer using a set of
metrics termed intuitively as operational metrics. For a
given system &S, in which the system refers to the net-
work at an arbitrary level, let the ¢ operational metrics
be represented as Ns = {Ny, ..., Ny¢}. Each operational

metric V;,1 < i </, is in itself a set of m values, repre-
senting all possible settings of the particular operational
metric, N; = {n;1,...,n; n}. For example, at the phys-
ical layer of an ISP network, the number of link failures
and link capacities could be two operational metrics.
The operational state space of S is Ns = X;N; where
X represents the cross product operator. Therefore, the
operational state space consists of all possible combina-
tions of the operational metrics.

We now define an operational state, N as a subset of
the complete state space Ns, represented as the hori-
zontal axis in Figure 19. Therefore, N is an operational
state if N C As. Let Ns be a set of operational states,
Ns = {Ny,...,N;}. Ng is valid if Ng is a partition
of Ns. That is N; N N; = @,N;,N; € Ng and i # j
and U;N; = Ng where U represents the union opera-
tor. Hence, in the generic case, an operational state is
defined as a subset of Ns.

If V; is numeric and ordered Vi such that N; € Ng,
then the k' operational state Nj, can be defined us-
ing the same notation used to define the complete state
space instead of specifying it as a subset of Ng. There-
fore, N, = {N1k,..., Nig, ..., Nep}. A member Ny in
the set N is in itself a set of valid values bounded
by [n,, k], representing the lower and upper limit of
the i*" operational metric. We can now define N, =
{n;k, -7 }. Thus Ny represents the set of i*® oper-
ational metric values that correspond to the operational
state Ni. We divide the operational state into three re-
gions: normal operation, partially degraded, and severely
degraded.

4.2.2 Service State P

The second step is to characterise the service provided
at a given network layer. The service parameters repre-
sent the requirements of the service that is being pro-
vided across the service interface. For example, the ser-
vice provided by the routing layer (to the transport
layer is) discovery of end-to-end paths. Let the ¢ ser-
vice parameters of system S be represented by Ps =
{P1,...,P;}. Each service parameter P;,1 < i < /¢,
is in itself a set of m values (representing all possi-
ble values of the particular service parameter), P, =
{pi1,---Dim}. The service state space of S is Ps =
X; P;. Therefore, the service state space consists of all
possible combinations of the service parameters.
Similar to an operational state, we define service
state, P, as a subset of the complete state space Pg,
represented as the vertical axis in Figure 19.. There-
fore, P is a service state if P C Pgs. Let Ps be a set
of service states, Ps = {Py,...,Px}. Ps is valid if Pg
is a partition of Ps. That is, P; NP; = 9,P;,P; € Ps
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and 7 # j and U;IP; = Pgs. Note that a union of all ser-
vice states forms the complete service state space. In
other words, service states are simply partitions of the
complete service space.

If P; is numeric and ordered, then the k" service
state can be represented as Py, = { Py, ..., Pig, - -
A member P, in the set Pj is in itself a set of val-
ues bounded by [p., .P;;], representing the lower and
upper limit of the i*" service metric. We can define
Py, = {]_)Z_k,...,g_)ik}. Thus, Pj, represents the set itP
service parameter values that correspond to the service
state Pg.

4.2.8 Network State S

The operational and service states described above rep-
resent the state of the network at any given time. There-
fore, we define the overall state Ss of the system S, as
a tuple of operational state and service state: (N,P).
Therefore the k*® network state is Sy = (Nj,Px). The
network state represents a mapping between the op-
erational state space ANs and service state space Ps.
Furthermore, this mapping is an onto mapping, mean-
ing that for every service state there is an operational
state.

In a deterministic system, the mapping of Ns to Ps
is functional, meaning that for each operational state
there is one and only one service state. However, if the
system is stochastic then this mapping is also stochastic
in which one operational state maps to multiple service
states based on the randomness in the execution of the
system. In order to eliminate the stochastic nature of
the Ns to Ps mapping in our analysis, we present the
Ns to Ps mapping, thereby focussing on the mapping of
aggregates rather than individual operational or service
states. In other words, instead of looking at the map-
ping of a instantaneous value of an operational metric
to a service parameter, we focus on the mapping of the
operational state to the service state.

Note that both the operational and the service state
spaces are multi-variate. In order to visualise this state
space on a two dimensional state space as in Figure 19,
we project both the operational state space and service
state space on to one dimension each. This projection
is achieved via objective functions that are applied to
both service and operational parameters. The specific
function used depends on the scenario. For example, it
may be be a linear combination with normalised weights
or logical functions (e.g., AND, OR)

Figure 19 shows the system in an initial state Sy
for which acceptable service is delivered during nor-
mal operations. As the network is challenged, its op-
erational state may be degraded, represented by the

.y P}

states labelled S., S,. Depending on the service specifi-
cation and resilience, various trajectories are possible.
The lower S, is preferable since the service remains ac-
ceptable even when the network degrades. Next, we de-
scribe how this can be quantified.

Operational State N

Normal Partially ~ Severely

Operation Degraded Degraded

Impaired Unacceptable

Service Parameters P

Acceptable

Fig. 20 Resilience R measured in state space

4.2.4 Resilience Fvaluation R

Under normal conditions, the network continues to op-
erate in a given state corresponding to normal oper-
ational and service states. When a challenge causes a
large perturbation in the operational state, the service
may also be impaired below the acceptable service spec-
ification. A significant change in either dimension leads
to a network state transition. We formulate that chal-
lenges in the form of adverse events transform the net-
work from one state to another based on the severity
of the event. Network resilience can be evaluated in
terms of the various network state transitions under
the presence of challenges. Resilience R;; is defined at
the boundary B;; between any two adjacent layers L;,
L;. Resilience R;; at the boundary B;; is then evalu-
ated as the transition of the network through this state
space. The goal is to derive the R;; as a function of
N and P. The operational and service space is covered
fully by its states and can be decomposed in a fixed set
of large states which we term as regions. For simplicity,
the network operational space N is divided into normal
operation, partially degraded, and severely degraded re-
gions as shown in Figure 20. Similarly, the service space
P is divided into acceptable, impaired, and unacceptable
regions.



Evaluation of Network Resilience, Survivability, and Disruption Tolerance 19

We then quantify the resilience R;; for a particular
scenario at a particular layer boundary B;; as the area
under the resilience trajectory, shown by the shaded
triangular area under the Sy — S trajectory in Fig-
ure 20. This results in a static resilience analysis [79]
that does not consider the temporal aspects of the state
space trajectory.

Operational State N

Normal Partially  Severely
Operation Degraded Degraded

Remediate

Impaired Unacceptable

Service Parameters P

Acceptable

Fig. 21 Resilience state space

4.2.5 Relationship to the Strategy

The relationship of the the state-space formulation to
the ResiliNets strategy described in Section 2 is shown
in Figure 21. The inner D?R? loop trajectory is shown.
Defence prevents the system from leaving its initial
state Sp. If a challenge causes the state to change signifi-
cantly, this is detected by a change in the operational or
service parameters when the state goes to a challenged
state S.. Remediation improves the situation to S;, and
recovery finally returns the system to its original state

So.

! Recover

Remediate

P
A ‘ tl}
o pE— —

A 3 3 7

Fig. 22 Temporal aspects of resilience

To measure the benefits of remediation mechanisms,
a temporal resilience analysis should not only consider
the area under the trajectory, but factor in the time
that the system is in challenged and remediated states,
as shown in Figure 22 (based in part on on [140]). At
time t( a challenge lowers performability by P, (fraction
unserved) corresponding to the Sy — S, state transi-
tion, but then remediation mechanisms at t; increase
performability by P, (fraction remediated) correspond-
ing to the S. — S, state transition. Eventually recovery
at to returns the network to its original normailsed per-
formability of P = 1. Clearly the shorter the time to
remediate £, and time to recover tg, the more resilient
the network.

Operational State N

Normal Partially ~ Severely

Operation Degraded Degraded

Impaired Unacceptable

Service Parameters P

Acceptable

Fig. 23 Resilience state space

The outer control loop reduces the impact of a given
challenge in the future, as shown in Figure 23, in which
the challenged state S is not as bad as the previous
Se, and remediation performs better with S/ resulting
in a smaller area R’ and better overall resilience. Tem-
poral analysis considers the improvement not only for
the static condition of R’ < R, but also for reduced
remediation and recovery times: t, < t, and ¢ < tg.

4.2.6 Multilevel Multiscenario Resilience R

In the multilevel analysis, as shown in Figure 24, the
service parameters at the boundary B;; become the op-
eration metrics at boundary B;11 j4+1. In other words,
the service provided by a given layer becomes the op-
erational state of the layer above, which has a new set
of service parameters characterizing its service to the
layer above.
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Service Parms. P;,,

Operational State N;,; =~ P;,,

Service Parms. P,

Operational State N;

Fig. 24 Resilience across multiple levels

By beginning at the bottom level and progressing up
the service layers, an overall multilevel resilience value
can be computed [79], and by composing these across
all scenarios of interest for a given network architecture,
it may be possible to derive a single resilience value .

4.3 Example Analyses

In order to demonstrate the application of this frame-
work, we conduct a static resilience analysis of example
ISP networks at the topology-service layer (3t) wherein
the objective is to study the impact of node and link
failures on the topology, followed by the routing-service
layer (3r) in which the objective it to construct a path
given a (hopefully connected) topology. Note that DTNs
(disruption tolerant networks) are primarily concerned
with the case in which layer 3t is unable to deliver stable
topologies over which layer 3r can create persistent end-
to-end paths. We divide the traditional network layer 3
into topology and routing sublayer services.

In the layer 3t case, a set of vertices V' and edges E
and link failures f characterise the operational state of
the network. The service provided by this layer is topo-
logical connectivity. Since we consider only link failures,
we choose a single operational metric n; to represent
the number of link failures. Therefore Ng; = {N;}. In
this example, we define the topology service by selecting
two service parameters: the relative size of the largest
connected component p; that represents the reachabil-
ity of the graph and clustering coeflicient po represent-
ing the local richness of the topology. While reachability
directly affects the number of pairs that are reachable,
the clustering coefficient affects how the local paths will
be affected by link failures. Therefore, Ps; = {Py, P2 }.
We conduct simulations in MATLAB to evaluate the

impact of link failures on the service parameters at
this boundary. We explore the operational link-failure-
probability metric over the range of [0.0,0.5] to com-
mercial US ISPs and a European research network, the
latter significantly smaller and less connected. The sim-
ulation results are averaged over 100 runs. The purpose
of this example is to show how the proposed metrics
framework can be applied at a service boundary given
a certain set of service constraints expressed in terms
of what is acceptable, impaired, and unacceptable.
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Fig. 25 Comparing resilience of ISP topologies

Given these operational and service regions, we plot
the simulation results on a piece-wise linear axis. Fig-

ure 25 compares the steady-state resilience of the Rocketfuel-

inferred [4] AT&T, Sprint L3, and actual GEANT?2 [9]
network topologies to link failures as degradation in the
service from the acceptable to unacceptable region. The
region boundaries in both the operational and service
dimensions are arbitrarily chosen based on operational
targets and service requirements.

We see that the AT&T and Sprint networks lie in
the acceptable service region under normal operating
conditions; the research GEANT? network does not be-
cause it is not richly enough connected to meet this
service specification even in normal operation. Given
the rich connectivity of the AT&T network, the ser-
vice remains acceptable even when the network starts
degrading. However, as the failures continue the net-
work eventually moves to impaired service. As the net-
work operational conditions are severely degraded, the
service transitions from the impaired to unacceptable
region. The Sprint network provides unacceptable ser-
vice in the presence of a single link failure. In order to
get an aggregate measure of resilience, we calculate the
area under the curve formed by linear interpolation be-
tween the states. The smaller the area, the better is the
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resilience; in the limiting case, if the service remains ac-
ceptable for all operational conditions, the area under
the curve will be zero, representing perfect resilience
R = 1. In order to get a normalised value of resilience,
we define resilience R = 1—normalised area, where nor-
malised area is the total area divided by the span of the
z-axis.

The resilience R for AT&T is 0.63, for sprint 0.54
and for GEANT2 0.47. We observe that due to a fewer
number of links, the GEANT?2 topology has very low
clustering coefficient and the topology service performs
poorly even in the normal operational regions.
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Fig. 26 Resilience of multi-path routing on AT&T topology

Now we go up a level in the analysis in which N3, =
P3¢ to analyse the resilience of the routing service given
a topology. Figure 26 shows the resilience of the path-
diversity mechanism explained in Section 3.2, when us-
ing 1, 2, and 3 paths over the AT&T topology. We ob-
serve that as the number of paths selected (k) increases,
the service remains longer in the acceptable region and
degrades more gracefully. Note that k& = 1 represents
unipath routing in which even a single link failure will
result in failure of certain paths even if the network is
connected. As expected, multipath routing is more re-
silient to poorly connected topologies. A significantly
more detailed analysis with more examples (including
MANET resilience) is presented in [79]; dynamic tem-
poral analysis remains in future work. A related ana-
lytical approach computes the robustness R-value [145]
and uses GraphExplorer [54].

5 Simulation Methodology

This section describes our simulation framework and
methodology for understanding the resilience of net-
works and the impact of challenges. First the types of

challenges are presented. Then, the KU-CSM (The Uni-
versity of Kansas Challenge Simulation Module) is de-
scribed, followed by a few example simulation results.
More details are presented in [41,40].

5.1 Simulation Framework

Simulation via abstraction is one of the techniques to
analyse networks in a cost-effective manner. We have
chosen the ns-3 [110] network simulator since it is open
source, flexible, provides mixed wired and wireless ca-
pability (unlike ns-2), and the models can be extended.
Unfortunately, the simulation model space increases mul-
tiplicatively with the different number of challenges and
network topologies being simulated. Hence, for n differ-
ent topologies subjected to ¢ different challenges, n x ¢
models have to be generated and simulated. KU-CSM
decouples the challenge generation from topologies by
providing a comprehensive challenge specification frame-
work, thereby reducing the simulation model space to
n+c consisting of ¢ challenges applied to n network sce-
narios. We have created an automated simulation model
generator that arbitrarily combines network topologies
and challenge specifications, thus increasing the effi-
ciency of the simulation model generation process. Our
simulation framework consists of four distinct steps as
shown in Figure 27.

The first step is to provide a challenge specification
that includes the type of the challenge and specifics of
the challenge type. The second step is to provide a de-
scription of the network topology, consisting of node
geographical or logical coordinates and an adjacency
matrix. The third step is the automated generation of
ns-3 simulation code based on the topology and chal-
lenge descriptor. Finally, we run the simulations with
traffic sources and protocols as appropriate, and anal-
yse the network performance under challenge scenar-
ios. Additionally, the simulation framework can also be
enabled to generate ns-3 network animator (NetAnim)
traces for visualisation purposes.

5.2 Challenge Modelling

A challenge is an event that impacts normal opera-
tion [133]. A threat is a potential challenge that might
exploit a vulnerability. A challenge triggers faults, which
are the hypothesised cause of errors. Eventually, a fault
may manifest itself as an error. If the error propagates it
may cause the delivered services to fail [28]. Challenges
to the normal operation of networks include uninten-
tional misconfiguration or operational mistakes, mali-
cious attacks, large-scale disasters, and environmental
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challenges [133,134]. Network challenges can be cate-
gorised based on intent, scope, and domain they im-
pact [41]. Considerably more detail on challenge mod-
elling is presented in a companion paper [40].

We model the challenges based on the intent as
non-malicious or malicious. Non-malicious challenges
can be due to incompetence of an operator or designer.
These random events affect node and link availability,
and result in the majority of the failures observed [87,
117,83]. On the other hand, malicious attacks, orches-
trated by an intelligent adversary, target specific parts
of a network and can have significant impact if critical
elements of the network fail.

The scope of a challenge can be further categorised
based on nodes, links, or network elements affected within
a geographic area. Hurricanes, earthquakes, and solar
storms are examples of natural disasters that can im-
pact the network at a large scale [84]. Furthermore, ge-
ographically correlated failures can result from depen-
dency among critical infrastructures, as experienced in
the 2003 Northeast US blackout [93,51].

A domain of a challenge is wired or wireless; some
challenges can affect both, particularly area-based chal-
lenges. Challenges to the wired domain include fibre-
optic cable cuts and failure of switching nodes and trans-
mission equipment. Challenges that are inherent in the
wireless domain include weakly connected channels, mo-
bility of nodes in an ad-hoc network, and unpredictably
long delays [134]. These are the natural result of noise,
interference, and other effects of RF propagation such
as scattering and multipath, as well as the mobility of
untethered nodes. Furthermore, weather events such as
rain and snow can cause the signals to attenuate in
wireless communication networks [80]. Malicious nodes
may jam the signal of legitimate users to impair com-
munication in the open wireless medium.

While these challenge model categories are orthog-
onal to one other, particular challenge scenarios are a
combination of challenge sub-categories. For example,
a failure due to natural aging of a component can be
categorised as a non-malicious, wired or wireless, node
failure.

5.3 Implementation of Challenge Models

Modelling and simulating network performance under
challenge conditions is non-trivial [115]. There have been
several studies that analyse different aspects of net-
works under challenges (see [40]). Here we briefly de-
scribe the way in which challenges are implemented in
KU-CSM.

5.8.1 Non-malicious challenges

In the case of wired domain challenges in this category,
the number of nodes or links k& and challenge period is
specified in the challenge specification file. This type of
challenge models failures that are uncorrelated with re-
spect to topology and geography, that is, random node
and link failures.

5.3.2 Malicious attacks

We use topological properties of the graph in order to
determine the critical elements in the network based on
properties such as the degree of connectivity of nodes
and betweenness of nodes and links [97,107]). The crit-
ical nodes or links are shut down for the duration of the
challenge period to simulate an attacker with knowledge
of the network structure.

5.3.3 Large-scale disasters

The challenge specification for area-based challenges is
an n-sided polygon with vertices located at a particu-
lar set of geographic coordinates or a circle centered at
a user specified coordinates with radius r. The simu-
lation framework then determines the nodes and links
that are encompassed by the polygon or circle, and dis-
ables them during the challenge interval using the Com-
putational Geometry Algorithms Library (CGAL) [1].
We also implement dynamic area-based challenges, in
which the challenge area can evolve in shape over time:
scale (expand or contract), rotate, and move on a tra-
jectory during the simulation. Examples of the need
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to simulate arbitrary polygons are to model large-scale
power blackouts [51,29,48] and large-scale natural dis-
asters such as hurricanes and earthquakes [50,52,49].
Circles are useful to model solar coronal mass ejections

(CME) [5] and electromagnetic pulse (EMP) weapons [3].

5.8.4 Wireless challenges

To simulate challenges in the wireless domain, we cre-
ate a new propagation loss model that includes a mo-
bility model parameter and range of influence [41,40].
Using these parameters, the user can specify where the
loss takes place and how it moves over time. In this
way, we model a realistic challenge instead of relying
solely upon statistical methods. Unlike signal loss due
to scattering and line-of-sight obstacles, jammers can
cause radio channel interference that increase channel
noise and reduce the signal to noise ratio that is critical
to a receiver’s ability to discern the data bits correctly.
We implement a jammer module that sends high power
signals with high data rate packets continuously on the
same channel.

5.4 Example Simulation Analysis

In this section, we apply our challenge framework and

evaluation methodology to an example topology to demon-

strate the utility of this approach. We use the inferred
Sprint backbone network topology of 27 nodes and 68
links [131], shown in Figure 28 and Sprint fiber-optic
topology [85] in Figure 5c. The traffic matrix for log-
ical topologies consists of every node pair. For the fi-
bre topology the traffic matrix only consists of MPLS
PoP nodes as shown in Figure 29, since these are the
only nodes that can inject or extract traffic, eliminating
cities that only house amplifiers and regenerator nodes.
The physical topology has 245 cities of which 90 MPLS
PoP locations match the cities on the physical topology.
Since not all cities are traffic source or sinks, the statis-
tical failure scenarios would not be useful determining
the performability of the network; therefore we do not
do random node or link failures on the physical topol-
ogy. A full explanation of the challenge specifications,
as well as details of simulation parameters and further
example results are presented in [41,40].

5.4.1 Non-malicious and Malicious Challenges

First, we evaluate the performance of the Sprint topol-
ogy (Figure 28) under the presence of malicious and
non-malicious failures of up to 10 nodes or links, with
the packet delivery ratio (PDR) shown in Figure 30.
We measure the instantaneous PDR at the steady-state

¢ matched POP
» substitute POP
= outlier POP

Fig. 29 Sprint MPLS PoP locations

condition during which the challenge is causing a partic-
ular set of nodes and links to fail for a given time inter-
val; we are not concerned here with route-convergence
effects.
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Fig. 30 PDR during non-malicious and malicious challenges

The top curve in Figure 30 shows the PDR with
random link failures. In this case for 10 random link
failures averaged over 100 runs, the PDR drops to 87%.
The second curve from the top shows the PDR for link
attacks. In this case, we first calculate the betweenness
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Fig. 31 Area-based challenge scenarios for Sprint PoP topology

(a) Scaling circle

——

pe— .\\v"(

(b) Moving circle

—

W

(c) Scaling polygon

(b) Moving circle

Fig. 32 Area-based challenge scenarios for Sprint physical topology
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Fig. 33 PDR during area-based challenges

for each link in the topology, and provide the challenge
file as the list of the links to be brought down. As can
be seen, link attacks have more degrading impact than
the random failures: 50% PDR for highest ranked 10
links. The middle curve shows random node failures,
worse than link attacks or failures, since each node fail-
ure is equivalent of the failure of all links incident to
that node. The bottom two curves show the PDR dur-
ing node attacks based on degree of connectivity and
betweenness; these are the most damaging attacks to
the network. The primary difference between the two
attack scenarios is that an attack based on between-
ness can be more damaging for the few highest ranked
nodes. When the highest betweenness two nodes in rank
are attacked, PDR is reduced to 60%, while an attack
based on degree of connectivity only reduces the PDR

15.0
simulation time [s]

(b) Moving circle PDR

10.0 15.0 20.0 25.0

simulation time [s]

20.0 25.0 30.0 0.0 5.0

(c) Scaling polygon PDR

to 80%. This example confirms the intuition that at-
tacks launched with knowledge of the network topology
can cause the most severe damage.

5.4.2 Area-based Challenges

Recently, the research community has recognised the
importance of understanding the impact of geographi-
cally correlated failures on networks [98,41,31,111,112].
Our framework uses circles or polygons to model ge-
ographically correlated failures representative of large-
scale disasters needed for network survivability [134,59]
analysis. Next, we present the results of three scenar-
ios that demonstrate area-based challenges that evolve
spatially and temporally using the Sprint logical and
physical topologies, as shown in Figure 31 and Fig-
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ure 32. Application traffic is generated from 2 to 29
sec. and challenge scenarios were applied from 10 until
22 sec. for the plots as shown in Figure 33, which verify
the impact of the example challenges.

To demonstrate a scaling circle area-based challenge
scenario, we simulate a circle centered at in New York
as shown in Figure 31a and in Figure 32a for inferred
and physical topologies respectively, with a radius of
approximately 111 km. We choose the scenario to be
representative of an electromagnetic pulse (EMP) at-
tack [3]. The PDR is shown in Figure 33a. We choose
the simulation parameters such that the radius doubles
in every 4 sec. As can be seen, the PDR reduces as
the circular area doubles. The PDR drops depending
on how many nodes and links are covered in each step
for both physical and logical topologies.

Next, we demonstrate an area-based scenario that
can evolve spatially and temporally. We simulate a mov-
ing circle in a trajectory from Orlando to New York
that might model a severe hurricane, but with rapid
restoration of links as the challenge moves out of a par-
ticular area. Three snapshots of the evolving challenge
are shown in Figure 31b and Figure 32b. The radius of
the circle is kept at approximately 222 km. We choose
the simulation parameters for illustration such that the
circle reaches NY in seven seconds (to constrain simu-
lation time), with route recomputation every 3 sec.

As shown in Figure 33b PDR reduces to 93% for
the logical topology as the challenge starts only cov-
ering the node in Orlando at 10 sec and 82% for the
physical topologies, since there are several PoPs being
affected. As the challenge moves towards New York in
its trajectory, the PDR reaches 1.0 at the 13 sec. In this
case, the challenge area includes only the link between
Orlando and New York, but since there are multiple
paths for the Rocketfuel-inferred topology a single link
failure does not affect the PDR, showing that geographic
diversity for survivability is crucial [133]. On the other
hand, for the physical topology in the same instance,
the traffic source in Fairfax, South Carolina resides in
the challenge area, therefore the cumulative PDR does
not reach 100%. As the challenge moves into the North-
east US region, cumulative PDR values depend on the
number of traffic sources being affected by the challenge
area.

Polygons are useful to model specific geographic chal-
lenges such as power failures, earthquakes, and floods.
For a scaling polygon example, we show a 6-sided irreg-
ular polygon in the Midwest US, roughly representative
of the North American Electric Reliability Corporation
(NERC) Midwest region [3], as shown in Figure 31c and
in Figure 32c¢ for logical and physical topologies respec-
tively.

The PDR throughout the simulation is shown in
Figure 33c. In this scenario, the edges of the irregular
polygon increase 1.8 times every three sec. The charac-
teristics of the network performability in this scenario
is similar for both physical and logical topologies. The
PDR drops as the challenge area affects Chicago in the
smallest area at 10 sec. Despite the increase in the chal-
lenge area at 13 sec., the PDR improves due to com-
pletion of route reconvergence. As the area increases,
the PDR drops as low as 40% since the network is par-
titioned. This type of scenario can be used either to
understand the relationship between the area of a chal-
lenge and network performability, or to model a tem-
porally evolving challenge, such as a cascading power
failure that increases in scope over time.

Fig. 34 South central area-based challenge scenario

Next, we demonstrate an area-based scenario repre-
sentative of a hurricane hitting the South-central US as
shown in Figure 34. In the smallest area are the physical
nodes in New Orleans and Biloxi of which only New Or-
leans node is a MPLS PoP node generating and sinking
traffic. In the second circular area challenge, the phys-
ical nodes are: New Orleans, Baton Rouge, Lafayette,
Biloxi, and Mobile, in which 4 out of the 5 affected
nodes are MPLS PoP nodes. In the largest affected
area there are total of 10 physical nodes, 6 of which
are MPLS PoP nodes. However none of the three circu-
lar challenge areas cover any logical links or nodes on
the map in Figure 28, permitting us to investigate the
differences between logical and physical topologies.

The network performance of physical and logical
topologies when the South-central US region is chal-
lenged is shown in Figure 35. Since there are no nodes
or links in the logical topology impacted, the PDR is
100%. On the other hand, the PDR of the physical
topology drops to 98%, 91%, and 86% respectively as
the challenge area covers more physical nodes and links.
This demonstrates that it is imperative to study the im-
pact of area-based challenges on the physical topologies.
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Traditional layer-3 logical topologies are insufficient to
understand the impact of physical challenges against
the network infrastructure.

6 Experimental Evaluation

This section describes experimental evaluation and cross-
verification of resilience using a large-scale programmable
testbed: GpENI.

6.1 GpENI Overview

The Great Plains Environment for Network Innovation
— GpENI is an international programmable network
testbed centered on a regional optical network in the
Midwest US, providing flexible infrastructure across the
entire protocol stack [135,45]. The goal of GpENI is to
build a collaborative research infrastructure enabling
the research community to conduct experiments in Fu-
ture Internet architecture. GpENI is funded in part by
the US National Science Foundation GENI (Global En-
vironments for Network Innovation) and GENI experi-
mentation programs and by the EU FIRE (Future In-
ternet Research and Experimentation) programme, and
is affiliated with a project funded by the NSF FIND
(Future Internet Design) program. Two of the key char-
acteristics of GpENI needed for experimental evalua-
tion of resilience are programmability at all levels and
a large-scale flexible topology.

6.1.1 Programmability and Flezibility

The defining characteristic of GpENI is programmabil-
ity of all layers, as shown in Table 4, implemented on a
node cluster of general- and special-purpose processors.
At the top layer Gush [10] provides experiment con-
trol and Raven [13] distributes code; both are software

Table 4 GpENI programmability layers

GpENI Layer ‘ Programmability

experiment Gush, Raven
7 | application
T endotocend PlanetLab
3 router Quagga, XORP, Click
topology VINI
VLAN
2 lightpath DCN
1 photonics site-specific

developed as part of the GENI program. Layer 7 and
4 programmability are provided by the GENIwrapper
version of PlanetLab [11]. At layer 3, programmable
routers are implemented in Quagga [12], XORP [16],
and Click [6], supplemented by any other technology
GpENT institutions should choose to deploy. Flexible
network-layer topologies are provided by VINI [15]. At
layer 2, dynamic VLAN configurations are provided
by DCN-enabled managed Gigabit-Ethernet switches
at the center of each GpENI node cluster. GpENI in-
stitutions directly connected to the optical backbone
use DCN-enabled [7] Ciena switches to provide dynamic
lightpath and wavelength configuration. At layer 1, the
architecture even permits programmability at the pho-
tonic layer for switches that provide such support. Fur-
thermore, each GpENI institution can connect site spe-
cific networking testbeds; plans include wireless, sen-
sor, and cognitive radio testbeds (e.g. KUAR [102]).
External users in the broader research community may
request GpENI accounts with which to run network ex-
periments.

6.1.2 Topology

GpENI is built around the core GpENI optical back-
bone centered in the Midwest, shown in the centre of
Figure 36, among the principal institutions of KU (The
University of Kansas), KSU (Kansas State University),
UMKC (University of Missouri — Kansas City), and
UNL (University of Nebraska — Lincoln), with connec-
tivity to other Midwest US universities including the
GMOC (GENI Meta-Operations Center). The optical
backbone consists of a fibre-optic run from KSU to KU
to the Internet2 PoP in Kansas City, interconnected
with dedicated wavelengths to UMKC and UNL.

Each of the four core institutions has a node cluster
that includes optical switching capabilities provided by
a Ciena CoreDirector, with the ultimate goal of permit-
ting flexible spectrum, wavelength, and lightpath con-
figurations.

GpENTI is extended to Europe across Internet2 to
GEANT?2 and NORDUnet and then to regional or na-
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tional networks, as shown in Figure 36. Currently, con-
nectivity is achieved using L2TPv3 and IP tunnels. A
direct fibre link over JANET is deployed between Lan-
caster and Cambridge Universities. The principal Eu-
ropean GpENI institutions are Lancaster University in
the UK and ETH Ziirich in Switzerland, with addi-
tional core nodes at Universitat Bern in Switzerland, G-
Lab Kaiserslautern in Germany, and Simula Research
Laboratory in Norway. Similarly, GpENI is extended
to Asia across Internet2 to APAN, then to national
research network infrastructure including ERNET in
India. Furthermore, GpENI is interconnected to the
Emulab-based ProtoGENI cluster [18] in Utah, and is
deploying several small ProtoGENT clusters of its own.
Thus GpENI provides a large scale, rich topology on
which to perform resilience experiments.

6.2 Experimental Evaluation of Resilience

Resilient topologies generated by KU-LoCGen using
GpENI node geographic coordinates and analysed by
KU-CSM can be used to generate layer-2 topologies
that configure the topology of GpENI experiments. We
can then evaluate performance when GpENT slices are
challenged by correlated failures of nodes and links,
measuring connectivity, packet delivery ratio, goodput,
and delay, when subject to CBR (constant bit rate),
bulk data transfer, and transactional (HTTP) traffic.
We can also characterise the packet-loss probability of
wireless links at the Utah Emulab [8], and the capa-
bilities for emulating jamming and misbehaving nodes
within the Emulab-federated CMU wireless emulator.
The goal is to cross-verify identical configurations
of the simulated topologies and protocols discussed in

R

Internet2
ISCTE: Barcelona D
Lisboa. <

Sections 3 and 5 to GpENI experiments. GpENI ex-
periments will have the advantage of incorporating real
networking not easy to emulate in a simulation, albeit
still at smaller scale than large simulation topologies.

7 Summary and Future Outlook

Resilience is an essential property of the Future Inter-
net, including performability, dependability, and sur-
vivability. While a number of aspects of resilience have
been an active area of research for a half-century, it is
generally recognised that the Global Internet lacks re-
silience and is vulnerable to attacks and disasters. It is
critical to make progress toward evaluating proposals
for alternative topologies, protocols, and mechanisms
that are candidates for deployment in the Future Inter-
net.

However, we have lacked a comprehensive frame-
work to evaluate the resilience of current and proposed
network architectures, in part due to the complexity
of the problem. This requires metrics to quantify re-
silience, and a tractable methodology to evaluate net-
work resilience using appropriate abstractions in analy-

sis, simulation, and emulation permitting cross-verification

among these techniques.

This paper aims to contribute to this task by de-
scribing a comprehensive framework consisting of a re-
silience strategy, metrics for quantifying resilience, and
evaluation techniques. The key to a tractable solution
is multilevel composition of scenario-based evaluation
of the resilience R at each level, measured as the nor-
malised inverse of the area under the trajectory through
the N, P state space. Complex scenarios are simulated
using the KU-LoCGen topology generator and KU-CSM



28

James P.G. Sterbenz et al.

challenge simulation module in ns-3, which permit re-
alistic challenge, topology, and protocol simulations,
whose results can be mapped onto the state space for
analysis. Much future work remains to be done to fur-
ther refine the methodology, as well as to understand
the properties of a network that make it resilient, and
apply them to design and engineer the Future Resilient
Internet.
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