Predicting Topology Survivability using Path Diversity

Justin P. Rohrer, and James P.G. Sterbenz
Information and Telecommunication Technology Center
Department of Electrical Engineering and Computer Science
The University of Kansas
Lawrence, KS 66045, USA
Email: {roreh}@ittc.ku.edu

Abstract—In this paper we extend our path diversity metric to create a composite compensated total graph diversity metric that is representative of a particular topology’s survivability with respect to distributed simultaneous link and node failures. We tune the accuracy of this metric using 17 topologies, including 3 real fiber maps, 10 inferred logical maps, and 2 synthetic topologies having simulated their performance under a range of failure severities, and present the results. The topologies used are from national-scale backbone networks, with a variety of characteristics, which we characterize using standard graph-theoretic metrics. The end result is a compensated total graph diversity metric that accurately predicts the survivability of a given network topology.

Index Terms—path diversity; resilience; topology; measurement; survivability

I. INTRODUCTION AND MOTIVATION

With global dependence on networks in general, and the Internet in particular increasing on a daily basis, designing resilience into future networks, and improving the resilience of existing networks is more important than ever. Resilience is the ability of the network to provide and maintain an acceptable level of service in the face of various faults and challenges to normal operation [1], and is a superset of many other metrics including survivability and fault tolerance. In this paper we are interested in quantifying the survivability of network topologies so that new or modified topologies may easily be compared quantitativel. To do this we are starting with the existing path diversity metric that has been shown in our previous work to distinguish between similar topologies according to their survivability.

The Path Diversification method [2] is a heuristic algorithm designed to select multiple diverse paths between two nodes in a network. It yields several derived metrics reflecting some of the characteristics of the selected paths, as well as the network as a whole. The later aspect of Path Diversification is what we are interested in for the purposes of this paper.

The remainder of this paper is organized as follows: Section II presents some background and related work on survivability and graph theory. Section III. Section IV. Section V, and Section VI concludes.

II. BACKGROUND AND RELATED WORK

While the current Internet architecture makes limited provision for survivability in the higher layers of the network stack, it is clearly a key design consideration when engineering network topologies. This section presents some characteristic examples of existing research and its relation to path diversity.

A. Network Survivability

The study of network survivability is an extension of the study of fault-tolerance, which is the ability of a system to tolerate faults such that service failures do not result. Fault tolerance generally covers random single or at most a few faults, and is thus a subset of survivability [1]. The current level of reliance on the Internet in modern nations led to the understanding that fault-tolerant designs were not sufficient and that diversity in multiple forms is needed to prevent multiple parts of the infrastructure from sharing fate and thereby protect against correlated failures.

Survivability is the capability of a system to fulfill its mission, in a timely manner, in the presence of threats such as attacks or large-scale natural disasters. This definition captures the aspect of correlated failures due to an attack by an intelligent adversary [3], [4], as well as failures of large parts of the network infrastructure [5], [6].

Based on this definition, survivability may encompass a broad spectrum of failure scenarios, however the aspect about which we are concerned in this paper is the ability of a topology to remain connected (the acceptable service) [7], [8] while undergoing multiple simultaneous node and link failures (due to external challenges) [9], [10].

B. Graph Theoretic Approach

The problem of finding paths through a network has been well studied in the context of graph theory [11] as well as fiber network planning. The existing algorithms are based on different characteristics of these paths such as shortest paths, diverse and disjoint paths [12], and optical restorability [13]. Several algorithms exist to find the shortest path or k-shortest paths that include the earliest algorithms by Ford [14], Moore [15], Dijkstra [16], and Floyd [17], along with several modifications that address negative cycles and improve on or in some cases trade time and space complexities [18]. Following the shortest path between a pair of nodes, several algorithms were proposed to find the k-shortest paths, which involve
simple techniques such as manipulation of edge weights to highly optimized algorithms [19].

Furthermore, the concept of diverse paths has been investigated to find a pair of diverse paths, k-diverse paths, and k-shortest diverse paths. The existing literature covers techniques based on shortest path algorithm with the incremental removal of used edges from graph transformations [20], [21]. Bhadari presents efficient algorithms to compute edge-disjoint and vertex-disjoint paths [18]. However, these algorithms are based on finding completely diverse paths. Bhandari also discusses an algorithm that finds the maximally diverse paths between a pair of nodes using a modified Dijkstra’s algorithm.

III. PATH DIVERSITY OVERVIEW

This section gives a brief overview of the path diversification mechanism that was originally published in [2], [22].

A. Path Diversity

Since the primary motivation for implementing the path diversification mechanism is to increase resilience, paths should be chosen such that they will not experience correlated failures. To this end, we define a measure of diversity that quantifies the degree to which alternate paths share the same nodes and links. Note that in the WAN context in which we are concerned with events and connections on a large geographic scale, a node may be thought of as representing an entire PoP, and a link as the physical bundle of fibers buried in a given right-of-way. This distinction between WAN and LAN component identifiers affects only the population of the path database, not the usage of the diversity metric.

A path is any complete set of nodes and links that form a loop-free connection between a node-pair. Given a (source s, destination d) tuple, a path P between them is a vector containing all links L and all intermediate nodes N traversed by that path $P = L \cup N$ and the length of this path $|P|$ is the combined total number of elements in L and N. To calculate the path diversity we let the shortest path between a given (s, d) pair be P_0. Then, for any other path P_k between the same source and destination, we define the diversity function $D(x)$ with respect to P_0 as:

$$D(P_k) = 1 - \frac{|P_k \cap P_0|}{|P_0|}$$

The path diversity has a value of 1 if P_k and P_0 are completely disjoint and a value of 0 if P_k and P_0 are identical.

Figure 1 shows the shortest path, P_0, along with the alternate paths P_1 and P_2. Given a failure on node 1, both P_0 and P_2 will fail. In our approach, $D(P_2) = \frac{2}{3}$, which reflects this vulnerability. P_1 on the other hand has a diversity of 1, and does not share any common point of failure with P_0.

B. Effective Path Diversity

Effective path diversity (EPD) is an aggregation of path diversities for a selected set of paths between a given node pair (s, d). To calculate EPD we use the exponential function $\text{EPD} = 1 - e^{-\lambda k_{sd}}$ where k_{sd} is a measure of the added diversity defined as

$$k_{sd} = \sum_{i=1}^{k} D_{\min}(P_i)$$

where $D_{\min}(P_i)$ is the minimum diversity of path i when evaluated against all previously selected paths for that pair of nodes. λ is an experimentally determined constant that scales the impact of k_{sd} based on the utility of this added diversity. A high value of λ (> 1) indicates lower marginal utility for additional paths, while a low value of λ indicates a higher marginal utility for additional paths. Using EPD allows us both to bound the diversity measurement on the range [0,1] (an EPD of 1 would indicate an infinite diversity) and also reflect the decreasing marginal utility provided by additional paths in real networks. This property is based on the aggregate diversity of the paths connecting the two nodes.

C. Measuring Graph Diversity

The total graph diversity (TGD) is simply the average of the EPD values of all node pairs within that graph. This allows us to quantify the diversity that can be achieved for a particular topology, not just for a particular flow. For example a star topology will always have a TGD of 0, while a ring topology will have a TGD of 0.6 given a λ of 1.

This concludes the overview of the previous work on path diversity. Next we will look at the calculation of topology survivability, before going on to present the new metric compensated total graph diversity.

IV. TOPOLOGY SURVIVABILITY COMPARISON

In comparing the survivability of various topologies, we are concerned not with the performance of a particular protocol or mechanism in recovering from failures, rather we are considering the survivability inherent in the structure of the topology itself. To do that, we calculate the flow robustness as the probability of link and node failures is increased. In this case we are considering a flow to be in tact as long as a path exists that connects the source and destination, i.e. the source and destination nodes are not partitioned from one another. Questions of reconvergence time and path protection accuracy are all protocol specific and outside the scope of this paper.

We compare 17 topologies, 4 of which are synthetic topologies included for completeness. Ten topologies are logical router-level topologies inferred by the Rocketfuel project [23]. The remaining three are physical-layer fiber topologies based on [24]. Figures 2 and 3 show the physical and logical-layer topologies respectively for the Sprint network, as an
example of the substantial differences between these two categories of maps. The synthetic topologies can be easily recreated based on the data in the tables below, and the data (including adjacency matrices and node geo-locations) for the real topologies is available via KU-TopView, our Web-based topology map viewer [25].

A. Simulation Results

To perform the failure simulations we use MATLAB since we are not looking at dynamic or transient behavior and therefore do not need to simulate packet flows but can perform the calculations using graph-theoretic methods. For each of the 17 topologies we use the following process:

1) load topology adjacency matrix
2) calculate 300 failure sets based on current probability
 a) 100 sets with link-failures only
 b) 100 sets with node-failures only
 c) 100 sets with link & node failures
3) calculate fraction of node-pairs connected in each set
4) average across each 100 sets
5) plot 3 data points
6) increment failure-probability until all values range are complete

For this paper we use 51 failure probabilities evenly distributed over the range 0–0.5 inclusive, resulting in 15,300 simulation runs for each topology, or 260,100 runs total, which took several days to complete using a computing cluster consisting of approximately 1000 Intel Xeon CPU cores. The results of this process are summarized in Figures 4–12. These plots are a collection of the best-possible or reference curves that would appear on a plot comparing routing or path protection schemes. The curve for each plot is distinct due to its topology, and thus from these plots we can quickly
see which ones are more survivable than others. We have separated the plots into three categories: logical, physical, and synthetic, for plotting purposes simply for readability because they became difficult to distinguish with too many curves in each plot. At this point we can also take note of specific topology’s performance, for example the full-mesh does best overall, while the ring is the worst of the synthetic topologies, and the Sprint and AT&T physical topologies do the worst overall. What we take away from these plots is that the relative ordering of the curves remains largely unchanged (the few exceptions are of minimal size) and so it is reasonable to expect that a measure of survivability may be computed based on the topology alone, without being dependent on the expected probability of failure of individual links and nodes.

B. Topology Characteristics Survey

Table I lists all of the topologies analyzed, along with a set of standard graph-metrics defined as follows:

- **Node degree:** “The number of connections or edges the node has to other nodes.” [26]
- **Clustering coefficient:** “A measure of degree to which nodes in a graph tend to cluster together.” [27]
- **Diameter:** The maximum shortest-path between any node-pair.
- **Radius:** The minimum of the maximum shortest-path for all nodes.
- **Hop-count:** The average shortest-path between all node-pairs.
- **Closeness:** “The mean geodesic distance (i.e., the shortest path) between a vertex \(v \) and all other vertices reachable from it.” [28] Closeness is a measure of centrality and is related to node degree.
- **Betweenness:** “Betweenness is the number of shortest paths passing through a node or link and provides a centrality or importantness measure.” [29]

For each metric, the best (w.r.t. survivability) three values are highlighted in bold. A number of these features are linked to network resilience in one way or another, for example topologies with a high average node-degree generally have more protection paths available, while topologies with a high maximum node or link betweenness may have a central point-of-failure which would be targeted by an attacker. Diameter, radius, and hop-count are closely related distance metrics. In our previous work on path diversification (with a much smaller
Based on the flow robustness results (Section IV-A) we can rank the topologies based on their survivability in the presence of multiple failures\(^1\) as shown in Table II. This ranking can easily be done qualitatively by visual inspection of the plots above, with higher curve outranking lower curves. To perform the ranking a bit more rigorously we chose a fixed point on the x-axis (0.2 in this case) and ranked each topology according to its value at that point on the link and node failure plot. Since the curves have minimal crossover, this produces the same ranking as the visual inspection approach. The metrics values from Table I are also shown here as rankings in order to emphasize the correlation (or lack thereof) between each particular metric and the survivability rank. Some metrics are not included in this table, for example the number of nodes and links that are a direct measure of the graph size, and are not a unique property of the topology design, and the radius.

\(^{1}\)This is not to serve as a recommendation of one network over another for business purposes. Due to common business practices the Internet service providers listed (with the exception of GEANT2) do not make their network topology data publicly available. The data sets used are inferred by third parties and are over 10 years old in some cases.

<table>
<thead>
<tr>
<th>Network</th>
<th>Nodes</th>
<th>Links</th>
<th>Avg. Node Degree</th>
<th>TGD (k = 4)</th>
<th>Clustering Coefficient</th>
<th>Diam.</th>
<th>Radius</th>
<th>Hopcount</th>
<th>Closeness</th>
<th>Node Between.</th>
<th>Link Between.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full-Mesh</td>
<td>20</td>
<td>190</td>
<td>19.00</td>
<td>0.9502</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Manhattan Grid</td>
<td>25</td>
<td>40</td>
<td>3.20</td>
<td>0.8964</td>
<td>0</td>
<td>8</td>
<td>4</td>
<td>3.3333</td>
<td>3.0467</td>
<td>110</td>
<td>54</td>
</tr>
<tr>
<td>Ring</td>
<td>25</td>
<td>25</td>
<td>2.00</td>
<td>0.6521</td>
<td>0</td>
<td>12</td>
<td>12</td>
<td>6.5</td>
<td>0.1538</td>
<td>132</td>
<td>78</td>
</tr>
<tr>
<td>Star</td>
<td>25</td>
<td>24</td>
<td>1.92</td>
<td>0.0800</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1.92</td>
<td>0.3902</td>
<td>552</td>
<td>24</td>
</tr>
<tr>
<td>AboveNet</td>
<td>22</td>
<td>80</td>
<td>7.27</td>
<td>0.8559</td>
<td>0.6514</td>
<td>3</td>
<td>2</td>
<td>1.7229</td>
<td>0.8597</td>
<td>196</td>
<td>21</td>
</tr>
<tr>
<td>AT&T</td>
<td>108</td>
<td>141</td>
<td>2.61</td>
<td>0.5881</td>
<td>0.3274</td>
<td>6</td>
<td>3</td>
<td>3.3790</td>
<td>0.3030</td>
<td>4160</td>
<td>943</td>
</tr>
<tr>
<td>AT&T Phys.</td>
<td>361</td>
<td>466</td>
<td>2.58</td>
<td>0.9014</td>
<td>0.0550</td>
<td>19</td>
<td>6</td>
<td>11.57</td>
<td>0.0763</td>
<td>4527</td>
<td>1893</td>
</tr>
<tr>
<td>EBONE</td>
<td>28</td>
<td>66</td>
<td>4.71</td>
<td>0.8635</td>
<td>0.3124</td>
<td>3</td>
<td>3</td>
<td>2.2804</td>
<td>0.4507</td>
<td>132</td>
<td>42</td>
</tr>
<tr>
<td>Exodus</td>
<td>22</td>
<td>51</td>
<td>4.64</td>
<td>0.8843</td>
<td>0.3307</td>
<td>4</td>
<td>2</td>
<td>2.0563</td>
<td>0.4978</td>
<td>132</td>
<td>22</td>
</tr>
<tr>
<td>GEANT2 Phys.</td>
<td>34</td>
<td>51</td>
<td>3.00</td>
<td>0.7623</td>
<td>0.2898</td>
<td>9</td>
<td>5</td>
<td>3.4652</td>
<td>0.3007</td>
<td>556</td>
<td>131</td>
</tr>
<tr>
<td>Level 3</td>
<td>53</td>
<td>456</td>
<td>17.20</td>
<td>0.9154</td>
<td>0.7333</td>
<td>4</td>
<td>2</td>
<td>1.7721</td>
<td>0.5845</td>
<td>664</td>
<td>84</td>
</tr>
<tr>
<td>Sprint</td>
<td>44</td>
<td>106</td>
<td>4.82</td>
<td>0.8120</td>
<td>0.3963</td>
<td>5</td>
<td>3</td>
<td>2.6882</td>
<td>0.3853</td>
<td>602</td>
<td>129</td>
</tr>
<tr>
<td>Sprint Phys.</td>
<td>265</td>
<td>311</td>
<td>2.37</td>
<td>0.8221</td>
<td>0.0340</td>
<td>19</td>
<td>9</td>
<td>14.78</td>
<td>0.0700</td>
<td>3609</td>
<td>1637</td>
</tr>
<tr>
<td>Telstra</td>
<td>58</td>
<td>60</td>
<td>2.07</td>
<td>0.1295</td>
<td>0.2411</td>
<td>6</td>
<td>3</td>
<td>3.0023</td>
<td>0.3095</td>
<td>2136</td>
<td>806</td>
</tr>
<tr>
<td>Tiscali</td>
<td>51</td>
<td>129</td>
<td>5.06</td>
<td>0.7785</td>
<td>0.5068</td>
<td>5</td>
<td>3</td>
<td>2.4298</td>
<td>0.4236</td>
<td>656</td>
<td>96</td>
</tr>
<tr>
<td>Verio</td>
<td>122</td>
<td>310</td>
<td>5.08</td>
<td>0.8104</td>
<td>0.3509</td>
<td>8</td>
<td>4</td>
<td>3.1026</td>
<td>0.3335</td>
<td>3736</td>
<td>480</td>
</tr>
<tr>
<td>VSNL</td>
<td>7</td>
<td>7</td>
<td>2.00</td>
<td>0.2001</td>
<td>0.4167</td>
<td>4</td>
<td>2</td>
<td>2.0952</td>
<td>0.4982</td>
<td>18</td>
<td>12</td>
</tr>
</tbody>
</table>

Fig. 11. Node failure robustness (physical)

Fig. 12. Node & link failure robustness (physical)
which is so closely related to the diameter and the hop-count as to be redundant. In contrast, the average node degree relates the number of nodes to the number of links.

From Table II we see that most of the metrics correctly rank the top 2 or 3 networks according to their survivability, but beyond that the rank no longer corresponds. Based on previous experience with the path diversity metrics, and the intuition that diversity should be closely correlated with survivability, we investigated further and developed the Compensated Total Graph Diversity metric.

B. Compensated Total Graph Diversity

In [2] we noted that the diversity metric is independent of path length, meaning that there is no natural penalty assigned to longer paths as opposed to short ones. On the other hand, there is a significant statistical penalty to long paths when simulating probabilistic failures. Intuitively this penalty results from greater exposure in real networks to component failure due to natural faults or intentional attack. Returning to Table I we see that specific topologies receive a much higher TGD-rank than survivability-rank (e.g. AT&T Physical, Sprint Physical) also have much higher diameters than other networks with similar TGDs. Conversely, the star topology, which is given the lowest TGD rank but performs better than 5 other networks, has a much smaller diameter than the networks it outperforms. Further investigation showed that the average hop-count was a more precise indicator of this penalty than the diameter or radius. Based on this we propose a new composite metric that takes into account both TGD and average hop-count.

We call the new metric Compensated Total Graph Diversity (cTGD) and define it as follows:

$$cTGD = e^{TGD-1} \times h^{-\alpha}$$ \hspace{1cm} (1)

where h is the average hop-count and α is a parameter tuned experimentally. We find that $\alpha = 1.25$ gives the best correlation to our simulation results. The benefit of taking the exponential of the original TGD is that the range is still bounded between 0 and 1, but is no longer inclusive of 0, which allows for the cTGD of a topology with 0 diversity to be positive, as in the case of the Star network. From the hop-count component we desire an inverse relationship (higher hop-counts result in lower cTGDs), and we use the α parameter to tune the aggressiveness of this relationship. To put equation 1 in the context of providing an end-to-end service, it requires greater diversity to provide a given level of flow reliability over a long path than is required to achieve the same level of flow reliability over a short path. In the graph context, a large-diameter graph must provide a higher TGD to achieve the same level of flow-robustness as a smaller-diameter graph with a lower TGD.

TABLE III

<table>
<thead>
<tr>
<th>Network</th>
<th>Survivability Rank</th>
<th>Node Deg. Rank</th>
<th>TGD Rank</th>
<th>Clustering Rank</th>
<th>Diam. Rank</th>
<th>Hopcount Rank</th>
<th>Closeness Rank</th>
<th>Node Bet. Rank</th>
<th>Link Bet. Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full-Mesh</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Level 3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>AboveNet</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Exodus</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>8</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>EBONE</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>10</td>
<td>4</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Tiscali</td>
<td>6</td>
<td>4</td>
<td>11</td>
<td>4</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Sprint</td>
<td>7</td>
<td>5</td>
<td>9</td>
<td>6</td>
<td>5</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>Verio</td>
<td>8</td>
<td>4</td>
<td>10</td>
<td>7</td>
<td>7</td>
<td>10</td>
<td>10</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Manhattan Grid</td>
<td>9</td>
<td>6</td>
<td>4</td>
<td>15</td>
<td>7</td>
<td>12</td>
<td>12</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>VSNL</td>
<td>10</td>
<td>7</td>
<td>15</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>GEANT2 Phys.</td>
<td>11</td>
<td>6</td>
<td>12</td>
<td>11</td>
<td>8</td>
<td>14</td>
<td>14</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>Star</td>
<td>12</td>
<td>8</td>
<td>17</td>
<td>15</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>AT&T</td>
<td>13</td>
<td>7</td>
<td>14</td>
<td>9</td>
<td>6</td>
<td>13</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>Telstra</td>
<td>14</td>
<td>7</td>
<td>16</td>
<td>12</td>
<td>6</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>Ring</td>
<td>15</td>
<td>7</td>
<td>13</td>
<td>15</td>
<td>9</td>
<td>15</td>
<td>15</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>AT&T Phys.</td>
<td>16</td>
<td>7</td>
<td>3</td>
<td>13</td>
<td>10</td>
<td>16</td>
<td>16</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>Sprint Phys.</td>
<td>17</td>
<td>7</td>
<td>6</td>
<td>14</td>
<td>10</td>
<td>17</td>
<td>17</td>
<td>12</td>
<td>16</td>
</tr>
</tbody>
</table>

Table III again shows the topologies ranked according to
their simulated survivability results, alongside their cTGD metric value and cTGD rank. We see that both measures provide an identical ranking for all the topologies suggesting that the cTGD metric is an excellent predictor of topology survivability. We note here that we are not claiming that this exact correlation would hold true for every possible set of topologies, only that we expect a close correlation. The reason for this is that the TGD is a heuristic measure, and the survivability rank is based on a Monte Carlo simulation set, both of with introduce a margin of error. We have sought to reduce this error as much as possible through our methodology. That being said, what we are seeing is a strong correlation so that any reordering should only occur when two topologies have very similar cTGD and survivability metric values to begin with.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we extended the applicability of the total graph diversity metric by compensating for topologies that have higher average hopcounts, thus creating the cTGD metric. Our analysis of the properties of 17 real and synthetic topologies shows that cTGD is an excellent predictor of the survivability of these topologies when simultaneous distributed node and link failures occur. Future work includes evaluating cTGD on a large set of generated topologies engineered with specific properties (node degree, rank, etc.) to characterize the effect of those characteristics on survivability, as well as expanding the scope of our survivability simulations to include various types of intelligently targeted challenges.

ACKNOWLEDGMENTS

The authors would like to thank the members of the Resilinets group for discussions which led to this work, in particular Abdul Jabbar. This research was supported in part by NSF FIND (Future Internet Design) Program under grant CNS-0626918 (Postmodern Internet Architecture), by NSF grant CNS-1050226 (Multilayer Network Resilience Analysis and Experimentation on GENI), and by the EU FP7 FIRE programme ResumeNet project (grant agreement no. 224619).

REFERENCES