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Abstract—In this paper we extend our path diversity metric
to create a composite compensated total graph diversity metric
that is representative of a particular topology’s survivability with
respect to distributed simultaneous link and node failures. We
tune the accuracy of this metric using 17 topologies, including
3 real fiber maps, 10 inferred logical maps, and 2 synthetic
topologies having simulated their performance under a range
of failure severities, and present the results. The topologies used
are from national-scale backbone networks, with a variety of
characteristics, which we characterize using standard graph-
theoretic metrics. The end result is a compensated total graph

diversity metric that accurately predicts the survivability of a
given network topology.

Index Terms—path diversitiy; resilience; topology; measure-
ment; survivability

I. INTRODUCTION AND MOTIVATION

With global dependence on networks in general, and the
Internet in particular increasing on a daily basis, designing
resilience into future networks, and improving the resilience
of existing networks is more important than ever. Resilience
is the ability of the network to provide and maintain an
acceptable level of service in the face of various faults and
challenges to normal operation [1], and is a superset of many
other metrics including survivability and fault tolerance. In
this paper we are interested in quantifying the survivability of
network topologies so that new or modified topologies may
easily be compared quantitatively. To do this we are starting
with the existing path diversity metric that has been shown in
our previous work to distinguish between similar topologies
according to their survivability.

The Path Diversification method [2] is a heuristic algorithm
designed to select multiple diverse paths between two nodes in
a network. It yields several derived metrics reflecting some of
the characteristics of the selected paths, as well as the network
as a whole. The later aspect of Path Diversification is what we
are interested in for the purposes of this paper.

The remainder of this paper is organized as follows: Sec-
tion II presents some background and related work on surviv-
ability and graph theory. Section III. Section IV. Section V,
and Section VI concludes.

II. BACKGROUND AND RELATED WORK

While the current Internet architecture makes limited pro-
vision for survivability in the higher layers of the network

stack, it is clearly a key design consideration when engineering
network topologies. This section presents some characteristic
examples of existing research and its relation to path diversity.

A. Network Survivability

The study of network survivability is an extension of the
study of fault-tolerance, which is the ability of a system to
tolerate faults such that service failures do not result. Fault
tolerance generally covers random single or at most a few
faults, and is thus a subset of survivability [1]. The current
level of reliance on the Internet in modern nations led to the
understanding that fault-tolerant designs were not sufficient
and that diversity in multiple forms is needed to prevent
multiple parts of the infrastructure from sharing fate and
thereby protect against correlated failures.

Survivability is the capability of a system to fulfill its
mission, in a timely manner, in the presence of threats such
as attacks or large-scale natural disasters. This definition
captures the aspect of correlated failures due to an attack by
an intelligent adversary [3], [4], as well as failures of large
parts of the network infrastructure [5], [6].

Based on this definition, survivability may encompass a
broad spectrum of failure scenarios, however the aspect about
which we are concerned in this paper is the ability of a
topology to remain connected (the acceptable service) [7], [8]
while undergoing multiple simultaneous node and link failures
(due to external challenges) [9], [10].

B. Graph Theoretic Approach

The problem of finding paths through a network has been
well studied in the context of graph theory [11] as well as
fiber network planning. The existing algorithms are based
on different characteristics of these paths such as shortest
paths, diverse and disjoint paths [12], and optical restorabil-
ity [13]. Several algorithms exist to find the shortest path or k-
shortest paths that include the earliest algorithms by Ford [14],
Moore [15], Dijkstra [16], and Floyd [17], along with several
modifications that address negative cycles and improve on or in
some cases trade time and space complexities [18]. Following
the shortest path between a pair of nodes, several algorithms
were proposed to find the k-shortest paths, which involve
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simple techniques such as manipulation of edge weights to
highly optimized algorithms [19].

Furthermore, the concept of diverse paths has been investi-
gated to find a pair of diverse paths, k-diverse paths, and k-
shortest diverse paths. The existing literature covers techniques
based on shortest path algorithm with the incremental removal
of used edges from graph transformations [20], [21]. Bhadari
presents efficient algorithms to compute edge-disjoint and
vertex-disjoint paths [18]. However, these algorithms are based
on finding completely diverse paths. Bhandari also discusses
an algorithm that finds the maximally diverse paths between
a pair of nodes using a modified Dijkstra’s algorithm.

III. PATH DIVERSITY OVERVIEW

This section gives a brief overview of the path diversifica-
tion mechanism that was originally published in [2], [22].

A. Path Diversity

Since the primary motivation for implementing the path
diversification mechanism is to increase resilience, paths
should be chosen such that they will not experience correlated
failures. To this end, we define a measure of diversity that
quantifies the degree to which alternate paths share the same
nodes and links. Note that in the WAN context in which we are
concerned with events and connections on a large geographic
scale, a node may be thought of as representing an entire
PoP, and a link as the physical bundle of fibers buried in a
given right-of-way. This distinction between WAN and LAN
component identifiers affects only the population of the path
database, not the usage of the diversity metric.

A path is any complete set of nodes and links that form
a loop-free connection between a node-pair. Given a (source
s, destination d) tuple, a path P between them is a vector
containing all links L and all intermediate nodes N traversed
by that path P = L[N and the length of this path |P | is the
combined total number of elements in L and N . To calculate
the path diversity we let the shortest path between a given (s,
d) pair be P0. Then, for any other path Pk between the same
source and destination, we define the diversity function D(x)
with respect to P0 as:

D(Pk) = 1� |Pk \ P0|
|P0|

The path diversity has a value of 1 if Pk and P0 are completely
disjoint and a value of 0 if Pk and P0 are identical.
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Fig. 1. Shortest path P0 and alternatives P1 and P2

Figure 1 shows the shortest path, P0, along with the alternate
paths P1 and P2. Given a failure on node 1, both P0 and P2

will fail. In our approach, D(P2) = 2
3 , which reflects this

vulnerability. P1 on the other hand has a diversity of 1, and
does not share any common point of failure with P0.

B. Effective Path Diversity

Effective path diversity (EPD) is an aggregation of path
diversities for a selected set of paths between a given node-
pair (s, d). To calculate EPD we use the exponential function
EPD = 1 � e

��ksd where ksd is a measure of the added
diversity defined as

ksd =
kX

i=1

Dmin(Pi)

where Dmin(Pi) is the minimum diversity of path i when
evaluated against all previously selected paths for that pair of
nodes. � is an experimentally determined constant that scales
the impact of ksd based on the utility of this added diversity.
A high value of � (> 1) indicates lower marginal utility for
additional paths, while a low value of � indicates a higher
marginal utility for additional paths. Using EPD allows us
both to bound the diversity measurement on the range [0,1)
(an EPD of 1 would indicate an infinite diversity) and also
reflect the decreasing marginal utility provided by additional
paths in real networks. This property is based on the aggregate
diversity of the paths connecting the two nodes.

C. Measuring Graph Diversity

The total graph diversity (TGD) is simply the average of the
EPD values of all node pairs within that graph. This allows us
to quantify the diversity that can be achieved for a particular
topology, not just for a particular flow. For example a star
topology will always have a TGD of 0, while a ring topology
will have a TGD of 0.6 given a � of 1.

This concludes the overview of the previous work on path
diversity. Next we will look at the calculation of topology
survivability, before going on to present the new metric
compensated total graph diversity.

IV. TOPOLOGY SURVIVABILITY COMPARISON

In comparing the survivability of various topologies, we are
concerned not with the performance of a particular protocol
or mechanism in recovering from failures, rather we are
considering the survivability inherent in the structure of the
topology itself. To do that, we calculate the flow robustness as
the probability of link and node failures is increased. In this
case we are considering a flow to be in tact as long as a path
exists that connects the source and destination, i.e. the source
and destination nodes are not partitioned from one another.
Questions of reconvergence time and path protection accuracy
are all protocol specific and outside the scope of this paper.
We compare 17 topologies, 4 of which are synthetic topolo-
gies included for completeness. Ten topologies are logical
router-level topologies inferred by the Rocketfuel project [23].
The remaining three are physical-layer fiber topologies based
on [24]. Figures 2 and 3 show the physical and logical-
layer topologies respectively for the Sprint network, as an



Fig. 2. Sprint fiber map in KU-TopView Fig. 3. Sprint layer-3 map in KU-TopView
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Fig. 4. Link failure robustness (synthetic)

example of the substantial differences between these two
categories of maps. The synthetic topologies can be easily
recreated based on the data in the tables below, and the data
(including adjacency matrices and node geo-locations) for the
real topologies is available via KU-TopView, our Web-based
topology map viewer [25].

A. Simulation Results

To perform the failure simulations we use MATLAB since
we are not looking at dynamic or transient behavior and
therefore do not need to simulate packet flows but can perform
the calculations using graph-theoretic methods. For each of the
17 topologies we use the following process:

1) load topology adjacency matrix
2) calculate 300 failure sets based on current probability

a) 100 sets with link-failures only
b) 100 sets with node-failures only
c) 100 sets with link & node failures

3) calculate fraction of node-pairs connected in each set
4) average across each 100 sets
5) plot 3 data points
6) increment failure-probability until all values range are

complete
For this paper we use 51 failure probabilities evenly dis-

tributed over the range 0–0.5 inclusive, resulting in 15,300
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Fig. 5. Node failure robustness (synthetic)
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Fig. 6. Node & link failure robustness (synthetic)

simulation runs for each topology, or 260,100 runs total,
which took several days to complete using a computing cluster
consisting of approximately 1000 Intel Xeon CPU cores.
The results of this process are summarized in Figures 4–12.
These plots are a collection of the best-possible or reference
curves that would appear on a plot comparing routing or path
protection schemes. The curve for each plot is distinct due
to its topology, and thus from these plots we can quickly
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Fig. 7. Link failure robustness (logical)
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Fig. 8. Node failure robustness (logical)

see which ones are more survivable than others. We have
separated the plots into three categories: logical, physical,
and synthetic, for plotting purposes simply for readability
because they became difficult to distinguish with too many
curves in each plot. At this point we can also take note of
specific topology’s performance, for example the full-mesh
does best overall, while the ring is the worst of the synthetic
topologies, and the Sprint and AT&T physical topologies do
the worst overall. What we take away from these plots is that
the relative ordering of the curves remains largely unchanged
(the few exceptions are of minimal size) and so it is reasonable
to expect that a measure of survivability may be computed
based on the topology alone, without being dependent on the
expected probability of failure of individual links and nodes.

B. Topology Characteristics Survey

Table I lists all of the topologies analyzed, along with a set
of standard graph-metrics defined as follows:

• Node degree: “The number of connections or edges the
node has to other nodes.” [26]

• Clustering coefficient: “A measure of degree to which
nodes in a graph tend to cluster together.” [27]
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Fig. 9. Node & link failure robustness (logical)

flo
w

 ro
bu

st
ne

ss

failure probability

GEANT 2
ATT phys

Sprint phys

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.00 0.05 0.10 0.15 0.20

Fig. 10. Link failure robustness (physical)

• Diameter: The maximum shortest-path between any
node-pair.

• Radius: The minimum of the maximum shortest-path for
all nodes.

• Hop-count: The average shortest-path between all node-
paris.

• Closeness: “The mean geodesic distance (i.e., the shortest
path) between a vertex v and all other vertices reachable
from it.” [28] Closeness is a measure of centrality and is
related to node degree.

• Betweenness: “Betweenness is the number of shortest
paths passing through a node or link and provides a
centrality or importantness measure.” [29]

For each metric, the best (w.r.t. survivability) three values
are highlighted in bold. A number of these features are linked
to network resilience in one way or another, for example
topologies with a high average node-degree generally have
more protection paths available, while topologies with a high
maximum node or link betweenness may have a central point-
of-failure which would be targeted by an attacker. Diameter,
radius, and hop-count are closely related distance metrics. In
our previous work on path diversification (with a much smaller



TABLE I
NETWORK CHARACTERISTICS

Network Nodes Links Avg. Node TGD Clustering Diam. Radius Hopcount Closeness Node Link
Degree k = 4 Coefficient Between. Between.

Full-Mesh 20 190 19.00 0.9502 1 1 1 1 1 0 1
Manhattan Grid 25 40 3.20 0.8964 0 8 4 3.3333 0.3067 110 54

Ring 25 25 2.00 0.6321 0 12 12 6.5 0.1538 132 78
Star 25 24 1.92 0.000 0 2 1 1.92 0.5302 552 24

AboveNet 22 80 7.27 0.8559 0.6514 3 2 1.7229 0.5947 196 21
AT&T 108 141 2.61 0.5881 0.3274 6 3 3.3790 0.3030 4160 943

AT&T Phys. 361 466 2.58 0.9014 0.0550 37 19 13.57 0.0763 4527 1893
EBONE 28 66 4.71 0.8635 0.3124 4 3 2.2804 0.4507 132 42
Exodus 22 51 4.64 0.8843 0.3307 4 2 2.0563 0.4978 132 22

GÉANT2 Phys. 34 51 3.00 0.7623 0.2898 9 5 3.4652 0.3007 556 131
Level 3 53 456 17.20 0.9154 0.7333 4 2 1.7721 0.5845 664 84
Sprint 44 106 4.82 0.8120 0.3963 5 3 2.6882 0.3853 602 129

Sprint Phys. 263 311 2.37 0.8821 0.0340 37 19 14.78 0.0700 3609 1637
Telstra 58 60 2.07 0.1295 0.2411 6 3 3.3025 0.3095 2136 806
Tiscali 51 129 5.06 0.7785 0.5068 5 3 2.4298 0.4236 656 96
Verio 122 310 5.08 0.8104 0.3509 8 4 3.1026 0.3335 3736 480
VSNL 7 7 2.00 0.2001 0.4167 4 2 2.0952 0.4982 18 12
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Fig. 11. Node failure robustness (physical)

sample-set of topologies available to work with) it became
apparent that the TGD metric was able to differentiate similar
topologies according to their survivability performance, but
looking at the plots and Table I it is clear that this no longer
holds true when the network size varies widely. None of the
listed graph theory metrics (or any we are aware of) correlate
closely to network survivability as simulated in Section IV-A.
We address this void in Section V.

V. ANALYSIS

In this section we further explore the relationships between
the metrics listed in Section IV-B and topology survivability.

A. Topology Ranking

Based on the flow robustness results (Section IV-A) we can
rank the topologies based on their survivability in the presence
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of multiple failures1 as shown in Table II. This ranking can
easily be done qualitatively by visual inspection of the plots
above, with higher curve outranking lower curves. To perform
the ranking a bit more rigorously we chose a fixed point on the
x-axis (0.2 in this case) and ranked each topology according
to its value at that point on the link and node failure plot.
Since the curves have minimal crossover, this produces the
same ranking as the visual inspection approach. The metrics
values from Table I are also shown here as rankings in order
to emphasize the correlation (or lack thereof) between each
particular metric and the survivability rank. Some metrics are
not included in this table, for example the number of nodes
and links that are a direct measure of the graph size, and are
not a unique property of the topology design, and the radius,

1This is not to serve as a recommendation of one network over another
for business purposes. Due to common business practices the Internet service
providers listed (with the exception of GÉANT2) do not make their network
topology data publicly available. The data sets used are inferred by third
parties and are over 10 years old in some cases



TABLE II
NETWORK RANK

Network Survivability Node Deg. TGD Clustering Diam. Hopcount Closeness Node Bet. Link Bet.
Rank Rank Rank Rank Rank Rank Rank Rank Rank

Full-Mesh 1 1 1 1 1 1 1 1 1
Level 3 2 2 2 2 4 2 3 10 9

AboveNet 3 3 8 3 3 3 2 5 3
Exodus 4 5 5 8 4 5 6 4 4
EBONE 5 5 7 10 4 7 7 4 6
Tiscali 6 4 11 4 5 8 8 9 10
Sprint 7 5 9 6 5 9 9 8 11
Verio 8 4 10 7 7 10 10 13 13

Manhattan Grid 9 6 4 15 7 12 12 3 7
VSNL 10 7 15 5 4 6 5 2 2

GÉANT2 Phys. 11 6 12 11 8 14 14 7 12
Star 12 8 17 15 2 4 4 6 5

AT&T 13 7 14 9 6 13 13 14 15
Telstra 14 7 16 12 6 11 11 11 14
Ring 15 7 13 15 9 15 15 4 8

AT&T Phys. 16 7 3 13 10 16 16 15 17
Sprint Phys. 17 7 6 14 10 17 17 12 16

which is so closely related to the diameter and the hop-count
as to be redundant. In contrast, the average node degree relates
the number of nodes to the number of links.

From Table II we see that most of the metrics correctly rank
the top 2 or 3 networks according to their survivability, but
beyond that the rank no longer corresponds. Based on previous
experience with the path diversity metrics, and the intuition
that diversity should be closely correlated with survivability,
we investigated further and developed the Compensated Total
Graph Diversity metric.

B. Compensated Total Graph Diversity
In [2] we noted that the diversity metric is independent of

path length, meaning that there is no natural penalty assigned
to longer paths as opposed to short ones. On the other
hand, there is a significant statistical penalty to long paths
when simulating probabilistic failures. Intuitively this penalty
results from greater exposure in real networks to component
failure due to natural faults or intentional attack. Returning
to Table I we see that specific topologies receive a much
higher TGD-rank than survivability-rank (e.g. AT&T Physical,
Sprint Physical) also have much higher diameters than other
networks with similar TGDs. Conversely, the star topology,
which is given the lowest TGD rank but performs better than 5
other networks, has a much smaller diameter than the networks
it outperforms. Further investigation showed that the average
hop-count was a more precise indicator of this penalty than the
diameter or radius. Based on this we propose a new composite
metric that takes into account both TGD and average hop-
count.

We call the new metric Compensated Total Graph Diversity
(cTGD) and define it as follows:

cTGD = e

TGD�1 ⇥ h

�↵ (1)

where h is the average hop-count and ↵ is a parameter
tuned experimentally. We find that ↵ = 1.25 gives the best

correlation to our simulation results. The benefit of taking
the exponential of the original TGD is that the range is still
bounded between 0 and 1, but is no longer inclusive of 0,
which allows for the cTGD of a topology with 0 diversity
to be positive, as in the case of the Star network. From
the hop-count component we desire an inverse relationship
(higher hop-counts result in lower cTGDs), and we use the
↵ parameter to tune the aggressiveness of this relationship.
To put equation 1 in the context of providing an end-to-end
service, it requires greater diversity to provide a given level of
flow reliability over a long path than is required to achieve the
same level of flow reliability over a short path. In the graph
context, a large-diameter graph must provide a higher TGD to
achieve the same level of flow-robustness as a smaller-diameter
graph with a lower TGD.

TABLE III
COMPENSATED TGD

Network Survivability cTGD cTGD
Rank Rank

Full-Mesh 1 0.9514 1
Level 3 2 0.4494 2

AboveNet 3 0.4386 3
Exodus 4 0.3617 4
EBONE 5 0.3113 5
Tiscali 6 0.2641 6
Sprint 7 0.2407 7
Verio 8 0.2009 8

Manhattan Grid 9 0.2002 9
VSNL 10 0.1783 10

GÉANT2 Phys. 11 0.1668 11
Star 12 0.1628 12

AT&T 13 0.1446 13
Telstra 14 0.0941 14
Ring 15 0.0667 15

AT&T Phys. 16 0.0348 16
Sprint Phys. 17 0.0307 17

Table III again shows the topologies ranked according to



their simulated survivability results, alongside their cTGD
metric value and cTGD rank. We see that both measures
provide an identical ranking for all the topologies suggesting
that the cTGD metric is an excellent predictor of topology
survivability. We note here that we are not claiming that
this exact correlation would hold true for every possible set
of topologies, only that we expect a close correlation. The
reason for this is that the TGD is a heuristic measure, and the
survivability rank is based on a Monte Carlo simulation set,
both of with introduce a margin of error. We have sought to
reduce this error as much as possible through our methodology.
That being said, what we are seeing is a strong correlation so
that any reordering should only occur when two topologies
have very similar cTGD and survivability metric values to
begin with.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we extended the applicability of the total graph
diversity metric by compensating for topologies that have
higher average hopcounts, thus creating the cTGD metric. Our
analysis of the properties of 17 real and synthetic topologies
shows that cTGD is an excellent predictor of the survivability
of these topologies when simultaneous distributed node and
link failures occur. Future work includes evaluating cTGD on
a large set of generated topologies engineered with specific
properties (node degree, rank, etc.) to characterize the effect
of those characteristics on survivability, as well as expanding
the scope of our survivability simulations to include various
types of intelligently targeted challenges.
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