
Destination-Sequenced Distance Vector (DSDV)
Routing Protocol Implementation in ns-3

Hemanth Narra, Yufei Cheng,
Egemen K. Çetinkaya, Justin P. Rohrer and James P.G. Sterbenz

Information and Telecommunication Technology Center
Department of Electrical Engineering and Computer Science

The University of Kansas, Lawrence, KS 66045, USA
{hemanth, yfcheng, ekc, rohrej, jpgs}@ittc.ku.edu

http://www.ittc.ku.edu/resilinets

ABSTRACT
Routing protocols are a critical aspect to performance in
mobile wireless networks. The development of new protocols
requires testing against well-known protocols in various sim-
ulation environments. In this paper we present an overview
of several well-known MANET routing protocols and the
implementation details of the DSDV routing protocol in the
ns-3 network simulator. We analyse DSDV routing perfor-
mance under various scenarios and compare its performance
with the other protocols implemented in ns-3, AODV and
OLSR. Our results verify the implementation of DSDV and
show performance comparable to that of OLSR.

Categories and Subject Descriptors
I.6 [Simulation and Modeling]: General, Model Devel-
opment, Model Validation and Analysis; C.2.2 [Computer-
Communication Networks]: Network Protocols — rout-
ing protocols

General Terms
Algorithms, Design, Performance, Verification

Keywords
DSDV, ns-3, DSDV model implementation, MANET rout-
ing protocol, ns-3 simulation methodology, AODV, OLSR

1. INTRODUCTION
Wireless mobile ad hoc networks (MANETs) [3] that do

not require infrastructure to operate have been the subject
of significant research. In MANETs, nodes self-organise and
act as both end systems and as intermediate systems. The
two major challenges to routing in MANETs are the dy-
namic topologies that result from mobility, and maintaining

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Wns3 2011 March 25, Barcelona, Spain.
Copyright 2011 ICST, ISBN .

connectivity in the face of wireless channels and nodes mov-
ing out of range from one another.

Many routing protocols for MANETs have been proposed,
however four are arguably the most prominent in the re-
search community: AODV [11], DSDV [13], DSR [6], and
OLSR [2], due to their early emergence and varied char-
acteristics. The operation and performance of these four
protocols provide an important baseline to which new pro-
tocols should be compared. In particular, DSDV provides
the proactive distance vector case.

Simulation has been the backbone of MANET research [3,
7], since the simulation environment provides easily accessi-
ble resources to study new protocols and models. The ns-2
simulator [8] has been widely used due to its open-source
model appropriate for the academic research community.
In response to a number of deficiencies, the ns-3 discrete
event network simulator [9] is under development, provid-
ing greater flexibility, modularity using C++, evolvability,
and support for heterogeneity including hybrid wired and
wireless models.

Despite its advantages, ns-3 is relatively new with few
protocol models yet incorporated into its release distribu-
tion [17]; existing built-in MANET protocols are limited
to the optimized link state routing (OLSR) and ad hoc
on-demand distance vector (AODV) protocols. Thus we
have developed an ns-3 implementation of the destination-
sequenced distance vector (DSDV) protocol and are cur-
rently developing a DSR implementation. DSDV is one of
the earliest MANET routing protocols proposed [13], and
provides a baseline proactive distance vector algorithm for
performance comparisons.

In this paper we describe our ns-3 implementation of the
DSDV routing protocol and compare its performance against
existing MANET routing protocols models in ns-3. The rest
of the paper is organised as follows: Section 2 presents back-
ground and related work on MANET protocols. Section 3
presents the details of the DSDV module implementation in
ns-3. Baseline performance evaluation and comparison of
DSDV against OLSR and AODV is presented in Section 4.
Finally, Section 5 presents our conclusions and future work,
including a DSR implementation in progress.

2. BACKGROUND AND RELATED WORK
In this section we present background information about

MANET routing protocols, and describe the three MANET
protocols simulated in this paper: DSDV, AODV, and OLSR.



2.1 Routing Protocol Types
MANET routing protocols can be classified into two cate-

gories based on their update mechanisms: proactive routing
protocols and reactive routing protocols.

2.1.1 Proactive Table-Driven Routing Protocols
Proactive routing protocols maintain routing information

of all the nodes in the network and add new routes or update
existing routes by periodically distributing routing informa-
tion among each other. One advantage of doing so is that
routes to any destination are ready to use when needed.
However, this is offset by the overhead of route updates in
response to mobility, for which nodes may have to wait any-
way. For a large dynamic network, convergence may not
be possible. Routing tables grow with the size and density
of the network, rather than the number of routes actually
needed. The overhead of flooding route advertisements to
maintain convergence is a major drawback of proactive pro-
tocols.

2.1.2 Reactive On-Demand Routing Protocols
Unlike proactive routing protocols, reactive routing pro-

tocols construct routes only when they are required. Thus
the nodes using reactive routing protocols do not need to
update their routing tables as frequently and do not main-
tain routes for all nodes in the network. When a node using
a reactive protocol requires a route to a new destination, it
initiates a route request and must wait until the route is dis-
covered. Reactive routing protocols have the disadvantage
of delay in finding routes to new destinations traded against
the savings of not needing to maintain tables for all possible
routes.

2.2 MANET Routing Protocols
In this section we summarize the MANET routing proto-

cols considered in this paper that have been implemented in
ns-3 as of release 3.9.

2.2.1 DSDV
The DSDV (destination-sequenced distance vector) proto-

col [13] uses the Bellman-Ford algorithm to calculate paths.
The cost metric used is the hop count, which is the num-
ber of hops it takes for the packet to reach its destination.
DSDV is a table-driven proactive protocol, thus it maintains
a routing table with entries for all the nodes in the network
and not just the neighbors of a node. The changes are propa-
gated through periodic and trigger update mechanisms used
by DSDV. Due to these updates, there is a chance of hav-
ing routing loops within the network. To eliminate routing
loops, each update from the node is tagged with a sequence
number. The sequence number from each node is indepen-
dently chosen but it must be incremented each time a pe-
riodic update is made by a node. The sequence number of
normal update must be an even number, since each time a
periodic update is made the node increments its sequence
number by 2 and adds its update to the routing message
it transmits. The node cannot change the sequence num-
ber of other nodes. If a node wants to send an update for
an expired route to its neighbors, only then it increments
the sequence number of the disconnected node by 1. The
nodes receiving this update will then look at the sequence
number and if it is odd, will remove the corresponding entry
from the routing table. Mobility of the nodes in MANETs

causes route fluctuations, for which DSDV uses settling time
to dampen.

2.2.2 AODV
AODV (ad hoc on-demand distance vector) [12, 11] is a

distance vector routing protocol that operates reactively to
reduce overhead finding routes only on demand. When a
route does not exist to a given destination, a route request
(RREQ) message is flooded by the source and by the inter-
mediate nodes if they have no previous routes in their table.
Upon receiving a RREQ message, the receiving node will
record the route information in its own routing table. Once
the RREQ message reaches the destination or an interme-
diate node, the node responds by unicasting a route reply
(RREP) message back to the neighbor from which it first
received the RREQ message. As the RREP message is for-
warded back along the reverse path, nodes along this path
set up forwarding entries in their routing tables, pointing to
the node from which they received RREP message. AODV
uses sequence numbers created by the destination for every
route entry to avoid routing loops. Routes with the great-
est sequence number are preferred in selecting routes from
the source to the destination. AODV is contained in the
standard ns-3 distribution, but there are problems with its
implementation as of release 3.9, as will be shown in Sec-
tion 4.

2.2.3 OLSR
OLSR (optimized link state routing) [2] is a proactive

routing protocol, for which routes to all destinations within
the network are discovered and maintained before a packet
is sent from source to destination. OLSR uses HELLO and
topology control (TC) messages to discover and broadcast
link state information throughout the network regularly. No-
des receiving this topology information compute next hop
destinations for all nodes in the network. HELLO messages
at each node discover 2-hop neighbor information and select
a set of multipoint relays (MPRs). MPRs are responsible for
transmitting broadcast messages and constructing link state.
OLSR floods topology data frequently enough over the net-
work to make sure all nodes are synchronised with link state
information. OLSR is also contained in the standard ns-3
distribution, and performs as expected for the analysis in
this paper.

2.3 Previous DSDV Simulations
DSDV has been implemented and analysed in a number of

simulation tools. A discrete event, packet-level routing sim-
ulator called MaRS (Maryland Routing Simulator) was used
to evaluate DSDV performance under different network sce-
narios [4], assumed a channel bandwidth of 1.5 Mb/s with
all data packets 512 B long, and interarrival times expo-
nentially distributed with a mean of 300 ms. This analysis
showed that for fraction of packets delivered, the proactive
DSDV routing protocol outperforms on-demand protocols
for both low and high mobility cases. Furthermore, the av-
erage end-to-end delays for DSDV show the minimum delay
characteristics.

Most relevant to this paper is the ns-2 predecessor to ns-
3. The performance of DSDV, AODV, and DSR have been
compared using ns-2 [1, 5]. DSDV exhibits low delay because
only packets belonging to valid routes at the sending instant
get through compared to AODV and DSR. However, DSDV



Attribute Defaults Summary
PeriodicUpdateInterval 15 s Time interval between exchange of full routing tables among nodes
EnableWST true Enables Weighted Settling Time for the updates before advertisement
SettlingTime 6 s Minimum time duration an update is stored before transmission
WeightedFactor 0.875 Weighted factor for the settling time if EnableWST is true
EnableBuffering true Enables buffering of data packets if no route to destination is available
MaxQueueLen 100 Maximum number of packets that can be queued
MaxQueueTime 30 s Maximum time duration for which packets can be queued
MaxQueuedPacketsPerDst 5 Maximum number of packets that can be buffered per destination
Holdtimes 3 Number of times PeriodicUpdateInterval to purge a route
EnableRouteAggregation false Enables aggregation of DSDV updates over a period of time
RouteAggregationTime 1 s Time over which DSDV updates are aggregated

Table 1: DSDV attributes and default values

has the highest overhead of the three protocols because of
the table updates flooded throughout the entire network.
This analysis also shows DSDV’s inability to converge when
the mobility is high, especially at high loads.

The ns-2 implementation of DSDV cannot be ported to
the ns-3 environment due to the significantly different sim-
ulation architecture and code structure, however the ns-2
implementation was used to provide insight and guide de-
sign decisions for our ns-3 implementation.

3. DSDV MODULE FOR ns-3
This section describes our implementation of DSDV, which

has been included in ns-3.10 stable release [10]. The main
components of the DSDV implementation are routing up-
date mechanisms, route table creation, and route mainte-
nance. DSDV maintains valid routes and flushes out invalid
routes based on the periodic update interval. We imple-
mented an optional packet buffering mechanism that was
not part of the initial DSDV design [13]. This feature is im-
plemented for testing the performance of the protocol with
and without packet buffering and also to provide users with
more options. All the attributes used in this implementation
are listed in Table 1. The details of the classes implemented
are explained next.

3.1 Class Interaction
The relation between all the classes implemented in this

module are shown in Figure 1. We implemented the DSDV
routing protocol ns3::dsdv::RoutingProtocol in ns-3 by
extending from the abstract base class ns3::Ipv4Routing

Protocol. The ns3::dsdv::DsdvHeader is extended from
ns3::Header. We have also declared ns3::dsdv::Routing

TableEntry to store the updates of a node and ns3::dsdv::

RoutingTable to store all these entries in a table. Sim-
ilarly we have declared the ns3::dsdv::QueueEntry class
to store a packet and ns3::dsdv::RequestQueue to store
all the queued entries. The main class that glues all these
together is the ns3::dsdv::RoutingProtocol class. An in-
depth explanation of all these classes is presented in the
following sections.

3.2 Header
The DSDV message header (DsdvHeader) is 32 bits wide

with the total header size of 12 bytes as shown in Figure 2.
The fields in the DSDV header are the node’s IP address,
the number of hops required to reach that node, and its last
known sequence number. The latter two are 32-bits long

in our implementation to provide word alignment and al-
low simulation of very large networks, even though the ns-2
implementation used 16-bit fields. Note that unlike AODV
and OLSR, there is no DSDV RFC to guide standards com-
pliance.

Destination Address

Hop Count

Sequence Number

Figure 2: DSDV message header

DSDV is encapsulated in User Datagram Protocol (UDP)
segments that are then encapsulated in IP packets, as shown
in Figure 3.

DSDVDSDVDSDVUDPIP …

Figure 3: DSDV header encapsulation

3.3 Routing Table
The structure of the DSDV RoutingTable is implemented

as follows. Each entry implemented by the RoutingTableEn-
try class corresponds to a node in the network and the entry
is mapped to that node’s IP address. Every entry stores the
following attributes of a node: its IP address, interface ad-
dress, a pointer to its ns-3 net device, last known sequence
number of the node, hop-count to reach the node, time-
stamp of the last update received for the node, and the set-
tling time for that node. Also, we maintain a boolean value
that specifies whether the entry for this node has changed
since the last periodic update. This helps filter DSDV up-
dates that are broadcasted through the trigger update mech-
anism. The RoutingTable class has methods to add, delete,
update, look up, and print entries. It also defines the event
functions explained in section 3.5.2.

DSDV maintains two routing tables: a permanent routing
table and an advertising routing table. These tables store
the permanent stable routes and the recently received routes
respectively. The recently received routes might be unstable;
therefore, when the node identifies a route to be stable, it



-SendTriggeredUpdate()
-SendPeriodicUpdate()
-RecvDsdv()
+RouteInput()
+RouteOutput()

-settlingTime
-periodicUpdateInterval
-mainAddress
-routingTable : RoutingTable
-queue : RequestQueue

RoutingProtocol

+Enqueue() : bool
+Dequeue() : bool
-IsEqual() : bool
+Find() : bool
+SetMaxPacketsPerDst()
+GetMaxQueueLen() : unsigned int

-maxLen
-maxLenPerDst
-queueTimeout
-IsEqual
-queueEntry : QueueEntry

RequestQueue

+AddRoute()
+DeleteRoute()
+LookupRoute()
+GetListOfAllRoutes()
+InvalidateRoutesWithDst()
+DeleteAllRoutesFromInterface()

-ipv4AddressEntry
-ipv4Events
-holddownTime
-routingTableEntry : RoutingTableEntry

RoutingTable

+Serialize()
+Deserialize()
+SetDst()
+GetDst()
+SetHopCount()
+GetHopCount() : unsigned int

-dst
-hopCount
-dstSeqNo

DsdvHeader

Ipv4RoutingProtocol

+GetRoute()
+SetRoute()
+GetNextHop()
+SetNextHop()
+GetSeqNo()
+SetSeqNo()

-seqNo : unsigned int = 0
-hops : unsigned int = 0
-settlingTime
-lifeTime
-ipv4Route

RoutingTableEntry

+SetPacket()
+GetPacket()
+SetIpv4Header()
+GetIpv4Header()
+SetExpireTime()
+GetExpireTime()

-packet
-exipre
-header

QueueEntry

-Table

1

-Entry

*

-Table

1

-Entry

*

Header

Figure 1: DSDV class diagram

advertises that route and moves it to the permanent routing
table. This mechanism of identifying stable routes is done
using SettlingTime, explained in detail in section 3.4. Fur-
thermore, a node can identify the stability of a route based
on the sequence number and hop count received through the
update, explained in Section 3.5.

3.4 Routing Advertisements
A node combines all the DSDV messages that it has to

transmit into a single packet over RouteAggregationTime, if
RouteAggregation is enabled. However, to keep the packet
size under the maximum transmission unit (MTU) in the
implementation, we split the packets and send them sepa-
rately if the packet size is longer than the MTU. As men-
tioned earlier, DSDV sends both periodic update messages
and trigger messages. As soon as the routing protocol in
the node is initialised, the node broadcasts its DSDV up-
date message to the network to announce its presence. Each
node will periodically broadcast its own routing table and
all the nodes that are in range of this advertisement will
use this information to update their routing tables. They
may further trigger these updates to other nodes in their
broadcast range. This mechanism is also used to keep the
neighborhood relationship alive. One of the attributes that
can be set for the routing protocol is the duration between
these periodic updates, known as periodic update interval,
using PeriodicUpdateInterval. It specifies the time dura-
tion for which a node has to wait before broadcasting its
routing table. A node uses the trigger update mechanism
when there are only a few updates to be transmitted. How-
ever, if the node identifies that the number of updates sent
per trigger is comparable to that of a periodic update, then
it sends a periodic update instead.

One more feature of DSDV routing protocol is the settling
time, which is used to prevent the advertisement of an un-
stable route that arrives at the node before a stable route.
Since DSDV uses broadcasting to propagate these changes,

it would create unnecessary overhead in the network. Thus,
a node waits for the period of SettlingTime before propa-
gating any update. However to make sure updates for stable
routes are not delayed, we use the attribute WeightedFac-

tor. This is used to calculate the weighted average of the
settling times for the updates received from a node. If the
update is for an old and stable route, the settling time de-
creases. A node can not process multiple update messages
simultaneously. If the nodes are highly mobile, the node
might have to send many updates as there would be a lot of
route changes. This will lead to more overhead in the net-
work that may increase the number of collisions. To reduce
overhead, we use RouteAggregation. This optional feature
enables multiple update messages to be sent out as a single
update message. The period over which routes are aggre-
gated can be modified by RouteAggregationTime attribute.

3.5 Processing of Updates
As mentioned in Section 3.4, a node might receive many

updates stacked within a single packet. Since the DSDV
header size is fixed to 12 bytes, we iterate over the packet
until it is empty to extract all the 12 B DSDV control mes-
sages. Each message is processed as it is extracted. We first
verify the destination address in the extracted message. If it
is same as the node’s IP address, the message is discarded. If
not, the protocol verifies whether the received update is for
a new route with a valid sequence number. In this case the
route is added to the permanent routing table and broadcast
immediately. Otherwise, if the node already has an update
for that IP address the protocol verifies the sequence num-
ber. If the sequence number is odd and if the node from
which this update was received is the next hop neighbor in
the table, then the route is deleted from the routing table
and triggers an update of this broken route to other nodes
immediately. However if the sequence number is valid we
have three cases in which the sequence number can relate to
the sequence number from the table:



• Received > Local : The protocol verifies the received
hop-count with the local value of hop count. If they
are not equal, the node updates its local entries in the
advertising routing table and waits for settling time pe-
riod if SettlingTime is enabled. This is implemented
using events in ns-3. This mechanism is explained
briefly in section 3.5.2. If the received hop-count is
same as the local value, then the node does not wait
for the settling time interval as this is an update for
the stable route.

• Received = Local : If the received hop-count is less than
the local value, then the local value is updated and the
protocol waits for settling time to make sure that this
update is not an unstable one. If it does not receive
any further update for that destination address, the
protocol updates the permanent table with this up-
date and triggers this update back to all its neighbors.
However if the received hop-count is greater than or
equal to the local value, the message is discarded.

• Received < Local : The protocol discards this update
message as it already has a most recent update from
that destination.

After processing messages from the packet, the SendTrig-
geredUpdate method will be called. SendTriggeredUpdate

iterates over the advertising routing table, computes all the
needed updates, and creates a new packet with these up-
dates and broadcasts.

3.5.1 Stale Entries
DSDV has a mechanism of removing stale entries from the

node’s routing table. If a node does not receive any updates
for a destination over a period of time, it removes that entry
from the routing table. In our implementation, DSDV waits
for Holdtimes × PeriodicUpdateInterval interval. The
default value of Holdtimes is set to 3, i.e. a node waits
for 3 times the PeriodicUpdateInterval before deleting the
route. Furthermore, the node must delete all the routes for
which the deleted neighbor was the next hop.

3.5.2 Event Processing
In the implementation of DSDV we use EventId ns3::

EventId to schedule events and keep track of them. These
are declared in the RoutingTable class. The IP address of a
node is mapped to the event id. We use these events to keep
track of the updates in advertising table and broadcast them
when their settling time is complete. When a node receives
an update for a destination that is already waiting in the
advertising table, the running event might be replaced by a
new one depending on the new update received.

3.6 Packet Buffering
We have implemented a buffering mechanism for DSDV

although it is not part of the DSDV as originally described
[13], to allow fairer comparisons with disruption-tolerant
networks (DTN) and domain-specific MANET routing pro-
tocols that do buffer packets that cannot be immediately
sent [16, 14]. We implemented two classes in a manner simi-
lar to the routing table implementation. QueueEntry class is
the entry that is stored in the queue, implemented from Re-

questQueue class. If the destination address for a packet is
not present in the protocol’s routing table, then the packet

is buffered. As DSDV is a proactive protocol, it does not
initiate any route discovery mechanism to identify the route
to that destination. It has to only rely on the messages
received from its neighbors through trigger and periodic up-
dates. DSDV will periodically verify the buffer and look for
packets with valid routes in the routing table and transmits
them. By default, our DSDV implementation buffers up to
5 packets per destination. This can however be changed
by modifying the MaxQueuedPacketsPerDst attribute. Fur-
thermore, packets which are buffered for a long time will
be dropped from the queue. The time interval for which a
packet can be buffered is set using MaxQueueTime. By de-
fault packet buffering is enabled, but this can be disabled
by setting EnableBuffering to false.

3.7 Parameter Tuning
An advantage of DSDV is that it is relatively simple com-

pared to other MANET routing protocols. It is also similar
to the conventional wired distance-vector routing protocols,
with only minimum adaptations made. However, the draw-
back of DSDV is that its periodic overhead for broadcasting
is unavoidable even if the network is static. If the node den-
sity increases in the network, the routing table will also be-
come larger. This leads to more updates with larger packet
sizes. With a highly dynamic network, the routing updates
may take up the available bandwidth of channel. Further-
more, before the time of update, intermediate nodes may use
stale information to forward packets. Thus proper choice of
PeriodicUpdateInterval and SettlingTime is important
in a highly mobile environment.

4. DSDV MODULE EVALUATION
To evaluate the performance of our DSDV routing pro-

tocol implementation, we performed simulations using the
ns-3.9 version of the network simulator1. To verify its func-
tionality, we investigate the DSDV performance with vary-
ing node densities as well as compared to the other existing
MANET routing protocols in ns-3: OLSR and AODV. Note
that a comparison to the DSR implementation currently in
progress is future work.

4.1 Performance Metrics
The performance metrics for evaluation of the DSDV rout-

ing protocol are packet delivery ratio (PDR), routing over-
head, and delay.

• Packet Delivery Ratio PDR: The number of pack-
ets received divided by the number of packets sent by
the application.

• Routing Overhead: The fraction of bytes used by
the protocol for DSDV control messages

• Delay: The time taken by the packet to reach the des-
tination node’s MAC protocol from the source node’s
MAC protocol.

4.2 Simulation Setup
We performed the simulations over an area of 1500 ×

300 m2. All the simulations were averaged over 10 runs with
each simulation running for 1000 s. Simulations were per-
formed with varying node densities: 10, 20 and 30 nodes.

1Before our DSDV was included in the ns-3 distribution in
ns-3.10.



The communication model is peer-to-peer communication
with as many flows as the number of nodes in the network.
We initially performed some simulations with 1000 byte pack-
ets but observed that the PDR was low, therefore we used a
packet size of 64 bytes based on previous study [1]. All the
nodes are configured to send 4 packets/s. Using this lower
packet size, we can correctly evaluate the performance of the
protocol. We use the ns-3 On-Off application to generate
CBR (constant-bit rate) traffic. The 802.11b MAC is used
over Friis propagation loss model to limit the transmission
ranges of nodes. The transmit power was set to 8.9048 dBm
to achieve a 250 m transmission range. The mobility model
used is random waypoint with random velocities from 0 –
20 m/s and pause times of 100 – 800 s. When comparing
DSDV performance against AODV and OLSR, we use 0 s
pause time. DSDV performance with optional buffer mode
enabled was analysed. We used the default DSDV param-
eters values described above except for PeriodicUpdateIn-

terval which was varied among {4, 5, 8, 12, 15, 30} s and
SettlingTime which was varied among {0, 1, 2, 3, 4, 5, 6} s.
Some of the simulation parameters were chosen based on the
previous MANET comparison studies [1].

4.3 Simulation Analysis
In the first scenario, we vary the pause time in therandom

waypoint mobility model so that we can analyse the perfor-
mance of DSDV in both mobile and static scenarios. For
this scenario, the PeriodicUpdateInterval is set to 15 s
and SettlingTime is 6 s. Figure 4 shows the variation of
PDR by varying the pause times.

pa
ck

et
 d

el
iv

er
y 

ra
tio

pause times [s]

10 nodes

20 nodes

30 nodes

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0 200 400 600 800 1000

Figure 4: PDR with varying pause time

We can see that as the number of nodes is increased the
packet delivery ratio also increased. This is due to the fact
that when there are only 10 nodes, the chances of link breaks
and network partitioning is more likely to happen than when
there are more nodes making the network connected for most
of the time. However, PDR for 20 nodes is greater than
that for 30 nodes for all pause times. This might be because
as the node density increases, the routing overhead also in-
creases and this leads to more collisions in the network. Note
the 95% confidence-interval error bars in Figure 4. As the
pause time increases, so does the variation in packet delay
(as depicted by error bars) for all the 3 curves for 10 nodes,

20 nodes and 30 nodes. This can be attributed to how the
nodes were positioned in the network initially since very long
pause times will reduce movement from the initial position.

The routing overhead for different node densities with
varying pause times is shown in Figure 5. This plot shows
that overhead increases with the number of nodes. This is
expected for DSDV since it is a proactive protocol and ev-
ery node keeps track of all the other nodes in the network;
when a node sends out a periodic update, it is flooded to all
other nodes. Depending on the changes based on an update
received, a node may further trigger updates to other nodes.

av
er

ag
e 

ov
er

he
ad

 [k
b/

s]

pause times [s]

10 nodes

20 nodes

30 nodes
0

20

40

60

80

100

120

140

0 200 400 600 800 1000

Figure 5: Overhead with varying pause time

The overhead as shown in Figure 5 slightly increased for all
the 3 curves moving from a pause time of 0 s to 100 s. With
zero pause time the nodes collect less information from the
network because they are continuously moving. With the
larger pause time of 100 s they collect more information from
the network. This translates to more updates. Furthermore,
as pause time is increased, the overhead is reduced.

pa
ck

et
 d

el
ay

 [s
]

pause times [s]

10 nodes

20 nodes

30 nodes

0

2

4

6

8

10

12

14

16

18

0 200 400 600 800 1000

Figure 6: Packet delay with varying pause time

We also consider the packet delay for data packets between
source and destination. Figure 6 shows the variations in
packet delay (as depicted by error bars) increase as the pause
time is increased for all the 3 curves for 10 nodes, 20 nodes



and 30 nodes. This is because as the pause time is increased
the nodes are immobile for longer durations and thus the
link connectivity depends on the position of the nodes, which
directly affects the packet delay.

pa
ck

et
 d

el
iv

er
y 

ra
tio

number of nodes

DSDV-b

DSDV-u

OLSR

AODV

0.0

0.2

0.4

0.6

0.8

1.0

10 15 20 25 30 35 40 45 50

Figure 7: PDR with varying node density

av
er

ag
e 

ov
er

he
ad

 [k
b/

s]

number of nodes

DSDV-b

DSDV-u

OLSR

AODV

0E+00

1E+03

2E+03

3E+03

4E+03

5E+03

6E+03

10 15 20 25 30 35 40 45 50

Figure 8: Overhead with varying node density

In Figure 7 we compare the packet delivery ratio of ex-
isting MANET routing protocols implemented in ns-3 with
DSDV. From the plot we can clearly see that OLSR out-
performs DSDV-buffer mode, DSDV-unbuffer mode, and
AODV. This is expected as OLSR implementation in ns-3
exchanges TC messages every 5 s [2], thus the routing ta-
bles are computed/re-computed every 5 s. However DSDV
uses a PeriodicUpdateInterval of 15 s making the conver-
gence of nodes running OLSR quicker compared to those
running DSDV. In DSDV the routes are not always accu-
rate as it depends only on periodic and trigger messages to
update the routes. AODV’s performance was expected to be
higher, however the current implementation of AODV has
some bugs that need to be fixed2.

2We have been working with ns-3 developers to report
AODV performance issues, and the situation has been im-
proving.

In our analysis, we also compare the routing overhead
involved with all these protocols, AODV incurs significant
overhead shown in Figure 8. DSDV and OLSR generates
about 112 kb/s and 65 kb/s of routing overhead respectively
for 30 nodes. However as the number of nodes increases, the
overhead increases as well. For a 50 node simulation, DSDV
incurred an overhead of 215 kb/s compared to 113 kb/s for
OLSR.

We analyse the packet delay for these protocols. The
packet delay is greater for DSDV when compared with OLSR
as shown in Figure 9. For a 30 node simulation, packet
delay for DSDV was 10 s where as it was 6 s for OLSR.
Since these scenarios were generally connected, the results
for DSDV-buffer and DSDV-unbuffer mode results were not
significantly different. The performance of the ns-3 AODV
model is considerably less than expected.

pa
ck

et
 d

el
ay

 [s
]

number of nodes

DSDV-b

DSDV-u

OLSR

AODV

0

50

100

150

200

250

300

10 15 20 25 30 35 40 45 50

Figure 9: Packet delay with varying node density

5. CONCLUSIONS
In this paper we presented the implementation of the

DSDV MANET routing protocol in ns-3. A detailed ex-
planation of the components and how each class interacts
with one other is also provided and the attributes that can
be modified in the protocol are presented. We analysed our
DSDV implementation in varying node densities and com-
pared its performance against OLSR and AODV. Our results
indicate that DSDV overhead increases as the node density
increases. PDR performance of the DSDV is inversely af-
fected as the overhead increases.

As part of the future work, we will explore the effects of
buffering on sparser networks. We also plan to analyse
the routing performance of the MANET protocols including
DSR which we are implementing in ns-3 at the University
of Kansas [15].

Acknowledgments
We would like to acknowledge the assistance of Abdul Jab-
bar and the members of the ResiliNets research group for
their advice and suggestions that helped us with this imple-
mentation. We would also like to acknowledge Tom Hender-
son and the ns-3 development team for their responsiveness
to issues with the relatively immature ns-3 platform.



6. REFERENCES
[1] J. Broch, D. Maltz, D. Johnson, Y.-C. Hu, and

J. Jetcheva. A Performance Comparison of Multi-hop
Wireless Ad Hoc Network Routing Protocols. In
Proceedings of the 4th Annual ACM/IEEE
International Conference on Mobile Computing and
Networking (MobiCom), pages 85–97, 1998.

[2] T. Clausen and P. Jacquet. Optimized Link State
Routing Protocol (OLSR). RFC 3626 (Experimental),
Oct. 2003.

[3] M. Conti and S. Giordano. Multihop Ad Hoc
Networking: The Theory. IEEE Communications
Magazine, 45(4):78–86, April 2007.

[4] S. R. Das, R. Castañeda, and J. Yan.
Simulation-based Performance Evaluation of Routing
Protocols for Mobile Ad Hoc Networks. Mob. Netw.
Appl., 5(3):179–189, September 2000.

[5] P. Johansson, T. Larsson, N. Hedman, B. Mielczarek,
and M. Degermark. Scenario-based Performance
Analysis of Routing Protocols for Mobile Ad-hoc
Networks. In Proceedings of the 5th Annual
ACM/IEEE International Conference on Mobile
Computing and Networking (MobiCom), pages
195–206, 1999.

[6] D. Johnson, Y. Hu, and D. Maltz. The Dynamic
Source Routing Protocol (DSR) for Mobile Ad Hoc
Networks for IPv4. RFC 4728 (Experimental), Feb.
2007.

[7] S. Kurkowski, T. Camp, and M. Colagrosso. MANET
Simulation Studies: The Incredibles. SIGMOBILE
Mob. Comput. Commun. Rev., 9(4):50–61, October
2005.

[8] The network simulator: ns-2.
http://www.isi.edu/nsnam/ns, December 2007.

[9] The ns-3 network simulator. http://www.nsnam.org,
July 2009.

[10] Dsdv code review.
http://codereview.appspot.com/1668042, June
2010.

[11] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc
On-Demand Distance Vector (AODV) Routing. RFC
3561 (Experimental), July 2003.

[12] C. Perkins and E. Royer. Ad-hoc On-demand Distance
Vector Routing. In Proceedings of the 2nd IEEE
Workshop on Mobile Computing Systems and
Applications (WMCSA), pages 90–100, February 1999.

[13] C. E. Perkins and P. Bhagwat. Highly Dynamic
Destination-Sequenced Distance-Vector Routing
(DSDV) for Mobile Computers. In Proceedings of the
ACM Conference on Communications Architectures,
Protocols and Applications (SIGCOMM), pages
234–244, 1994.

[14] K. Peters, A. Jabbar, E. K. Çetinkaya, and J. P.
Sterbenz. A Geographical Routing Protocol for
Highly-Dynamic Aeronautical Networks. In IEEE
Wireless Communications and Networking Conference
(WCNC), March 2011. to appear.

[15] J. P. Rohrer, E. K. Çetinkaya, A. Jabbar, D. Broyles,
K. Peters, H. Narra, Y. Cheng, K. S. Pathapati, and
S. Simpson. ResiliNets models and tools for ns-3
network simulator.
http://wiki.ittc.ku.edu/resilinets/Models_and_

Tools_for_ns-3_Network_Simulator, September
2010.

[16] T. Thedinger, A. Jabbar, and J. Sterbenz. Store and
Haul with Repeated Controlled Flooding. In
Proceedings of the 2nd IEEE International Workshop
on Mobile Computing and Networking Technologies
(WMCNT), pages 728–733, October 2010.

[17] E. Weingartner, H. vom Lehn, and K. Wehrle. A
Performance Comparison of Recent Network
Simulators. In IEEE International Conference on
Communications (ICC), pages 1–5, June 2009.


