
Bioinformatics Computational Journal:
User Guide

Victor Frost, Terry Clark, Susan Gauch,
Gerald Lushington, Gary Minden, Ed Komp,
Adam Hoch, David Johnson, Lance Feagan,

Alexander Garrett, Justin Rohrer, Heather
Amthauer, Andrew Ozor

ITTC-FY2008-TR-38270-04

November 2007

Copyright © 2007:
The University of Kansas
2335 Irving Hill Road, Lawrence, KS 66045-7612
All rights reserved.

Project Sponsor:
Edgewood Chemical Biological Center
Aberdeen Proving Ground, Maryland;

Dr. Kevin O’Connell
kevin.oconnell1@us.army.mil

U.S Army Contract W911SR-04-C-0087

Technical Report

The University of Kansas

Appendix A

Bioinformatics Computational Journal: User Guide

Investigators
Victor Frost
Terry Clark

Susan Gauch
Gerald Lushington

Gary Minden

Staff Researchers
Ed Komp

Adam Hock
David Johnson

Student Researchers
Lance Feagan

Alexander Garrett
Justin Rohrer

Heather Amthauer
Andrew Ozor

ITTC-FY2006-38270-A1

US Army Contract
W911SR-04-C-0087

Date: December 2006

Information and Telecommunications Technology Center

University of Kansas
2335 Irving Hill Dr.

Lawrence, Kansas 66045
Phone: (785) 864-4833 FAX:(785) 864-7789

e-mail: frost@eecs.ku.edu
http://www.ittc.ku.edu/

Project Sponsor
Edgewood Chemical Biological Center
Aberdeen Proving Ground, Maryland

Dr. Kevin O'Connell
kevin.oconnell1@us.army.mil

 i

Table of Contents

1 The Computational Journal Environment Overview... 1

1.1 Background.. 1
1.2 Entry Categories.. 1

1.2.1 Imported Data .. 2
1.2.2 Experiment Definition .. 2
1.2.3 Experiment Output.. 2
1.2.4 Annotations... 2

1.3 Entry Modification ... 2
1.4 Entry Dependencies ... 3

1.4.1 Navigation by Dependency... 4
1.5 Workflows.. 4

1.5.1 Resource Definition ... 4
1.5.2 Workflow Definition ... 5

1.6 Experiments... 6
1.6.1 Experiment Definition .. 6
1.6.2 Experiment Execution... 7
1.6.3 Experiment Error Object.. 7

2 Example... 8

2.1 Introduction... 8
2.2 Creating a new journal.. 9
2.3 Creating a new entry ... 11
2.4 Using the Workflow Editor... 13

2.4.1 Adding Resources to the Workflow .. 13
2.4.2 Defining Workflow Inputs and Outputs .. 15

2.5 Setting Properties .. 17
2.6 Saving the Entry.. 18
2.7 Adding Workflows to other Workflows.. 18
2.8 Creating a FASTA Entry ... 20
2.9 Adding an Annotation.. 21
2.10 Define Experiment from Workflow .. 22

3 Navigation... 26

3.1 Entry Actions .. 26
3.1.1 Open an Entry .. 26
3.1.2 Icon Menu Bar Options .. 27

3.1.2.1 Search.. 27
3.1.2.2 Refresh .. 30
3.1.2.3 Create Journal /Create Entry .. 31
3.1.2.4 Delete Selection ... 31

3.1.3 Context Menu Options.. 32
3.1.3.1 Show Entry Properties ... 33
3.1.3.2 Delete .. 33

 ii

3.1.3.3 Access Control... 33
3.1.3.4 Export ... 34

3.2 View Options for Navigator Shell.. 34
3.2.1 Navigator Filters ... 34
3.2.2 Navigator Sorters.. 35

3.3 Sub-Navigators.. 35
3.3.1 Dependent Manager... 36
3.3.2 Dependency Manager .. 37
3.3.3 Annotations... 37

3.3.3.1 Creating a new annotation ... 38
3.3.3.2 Annotation with an existing Entry .. 38

4 Workflow Editor.. 39

4.1 Palette Options.. 39
4.1.1 Selection... 39
4.1.2 Adding Components.. 39
4.1.3 Connections .. 41
4.1.4 Input and Output Ports... 41

4.2 Non-palette Actions ... 42
4.2.1 Argument Value Assignment.. 42
4.2.2 Context Menu Actions .. 43
4.2.3 Save Actions... 43
4.2.4 Help .. 43

5 Launching an Experiment .. 44

5.1 Starting the definition process .. 44
5.2 Adding Input ... 46
5.3 Execution Controls... 47

5.3.1 PBS Queue .. 47
5.3.2 Debug... 48

5.4 Assigning Values to Promoted Parameters... 48
5.5 Starting the Experiment ... 48
5.6 Tracking Experiment Progress ... 49

5.6.1 Check Experiment Progress ... 49
5.6.2 Queue Manager... 49

5.7 Stopping Experiment Execution .. 51
5.8 Viewing Results ... 51
5.9 Editing Experiment Definitions ... 51

6 Error Object ... 52

7 Incorporating External Viewers... 54

 iii

Table of Figures

Figure 1. BLASTn resource .. 4
Figure 2. Workflow definition.. 6
Figure 3. Flow chart of the experiment. .. 9
Figure 4. Create new journal icon in the Navigator Shell. ... 9
Figure 5. Create New Computational Journal dialog box... 10
Figure 6. Dialog box showing the list of journals. ... 10
Figure 7. Completed Create New Journal dialog box .. 11
Figure 8. Navigator Shell showing the new journal just created. ... 11
Figure 9. Create a new entry icon. ... 12
Figure 10. Dialog box for Create New Computational Journal Entry. .. 12
Figure 11. Dialog box showing the list of Content Types. ... 12
Figure 12. Shows the new entry, HMMER Flow, and the Editor Area. ... 13
Figure 13. Resource to Add Dialog box... 14
Figure 14. Resources added to the HMMER Flow. ... 15
Figure 15. Input port added to the HMMER Flow and name change. ... 16
Figure 16. HMMER Flow with Multiple Align connected to hmmbuild’s Align input port............ 16
Figure 17. HMMER Flow with all the Resources, Inputs and Outputs connected. 17
Figure 18. Completed Create New Computational Journal Entry dialogue box.................................. 18
Figure 19. Casein Comparison Workflow with all the Resources, Inputs and Outputs connected. 19
Figure 20. Setting Database parameter value.. 20
Figure 21. Subnavigator for Annotations and the icon to Create a new Entry to annotate selected Entry.

.. 21
Figure 22. Completed dialog box for Annotation. ... 22
Figure 23. Execution Wizard for defining an experiment from a workflow................................ 22
Figure 24. Execution Wizard dialog box ... 23
Figure 25. The graphical representation of the experiment.. 24
Figure 26. Queue Manager perspective and the Refresh button.. 24
Figure 27. Shows that the experiment has finished execution. .. 25
Figure 28. Shows the results of the experimental run. .. 25
Figure 29. Search icon in the Navigator Shell.. 27
Figure 30. Entry Search dialog box... 28
Figure 31. Expanded Content Type(s) option .. 28
Figure 32. Search dialog box after Update has been clicked. ... 29
Figure 33. Search with additional restrictions. .. 29
Figure 34. Entry Properties dialog box for the selected Entry... 30
Figure 35. Refresh from Persistent Store icon... 31
Figure 36. Delete Selection icon .. 31
Figure 37. Entry Properties dialog box. ... 33
Figure 38. Access Control dialog box... 34
Figure 39. Sub-Navigator Pull Down Menu. ... 36
Figure 40. Expand/Contract View icon .. 36
Figure 41. Sample view in the Dependent Manager. ... 37
Figure 42. Search for Computational Journal Entries dialog box.. 38
Figure 43. Results from Search for Computational Journal Entries dialog box.. 38
Figure 44. Search for: DataSource to Add dialogue box.. 40

 iv

Figure 45. Example of a hover-help message. .. 44
Figure 46. Experiment Menu option to define an experiment from an active Workflow. 45
Figure 47. Execution Wizard dialog box. ... 45
Figure 48. Execution Wizard dialog box. ... 46
Figure 49. Search dialog box that appears when looking for input. .. 46
Figure 50. Completed dialog box for an experiment input... 47
Figure 51. Completed Execution Wizard dialog box.. 48
Figure 52. Experiment in the Editor Area... 49
Figure 53. Queue Manager View .. 50
Figure 54. Shows the DataSink dialog box... 51
Figure 55. CopyOfMultipleAlignExample-Run.1.. 52
Figure 56. Error Object and the tabs for the other objects.. 53
Figure 57. Menu option to add an external viewer to the CJ environment. 55
Figure 58. Wizard to define a Local Service. ... 55
Figure 59. List of Content Types that can be selected... 56
Figure 60. Completed dialog box to add the external viewer. .. 56
Figure 61. Screen view of Entry 1AK1... 57

 1

1 The Computational Journal Environment
Overview

1.1 Background

The principal function of the Computational Journal (CJ) is to help users effectively perform
computational experiments (with a particular focus on bioinformatics applications).
Computational experiment is simply the term we use for running one more computer programs on
a data set. We use experiment to emphasize the correspondence between this action and a
biologist performing an experiment in a traditional wet lab. Likewise the CJ contains the
record of these computational experiments, analogous to the record that the biologist
maintains of his/her wet lab experiments in his/her lab notebook.

The CJ environment supports an arbitrary number of journals, which provide an organizational
structure for the storage of entries. Journals are hierarchical, that is a journal can be stored in
another journal, analogous to “directories” or “folders” in computer interfaces.

An entry (laboratory journal “entry”) is the basic unit of storage in the CJ environment. It
represents a unit of information or data in a specific format. Every entry is characterized by
the format of the data it stores, that is, its content type. The size of an entry may vary widely,
depending on its content type, from a short textual entry, to an entire chromosome. The CJ
environment uses the content type to determine how an entry can be used and manipulated in
the environment. For example, the CJ automatically determines the kind of editor to use for
an entry based on the entry’s content type. When searching for entries to use as an input to an
experiment, the search is limited to entries with a content type compatible with that of the
experiment to be run. The CJ environment supports the definition of new content types to
support new application programs and new research domains.

When an entry is created, a set of metadata is immediately collected and stored with the entry.
This metadata includes information such as: title, owner, access rights, creation time and
content type. Therefore, all entries contain a certain amount of common information that can
be used to help locate and/or organize the potentially large number of entries.

1.2 Entry Categories

Although the number of content types is large and extensible, every entry can be identified
with one of four major functional categories, which are described below.

 2

1.2.1 Imported Data

The CJ environment is self-contained. Any data that is used as input to an experiment must
be stored in a CJ entry. Therefore data from external sources and/or wet lab experiments
must be imported into the CJ environment.

1.2.2 Experiment Definition

The definition and execution of computational experiments are core tasks for the CJ
environment. The CJ provides graphical block diagram editors and includes a number of pre-
defined content types that support these activities. A thorough description of a workflow and
experiment definition will be presented in later sections.

1.2.3 Experiment Output

Each output generated by executing a computational experiment is stored in a new entry. The
content type of each output entry is determined by the experiment that was run. For example,
if a BLAST search was performed, then the output of the experiment will be a
BLAST_Report.

Output entries can also be exported. This operation makes a copy of the content of the entry
on user’s local computer. This allows users to communicate results to other people who are
not CJ users (e.g. a collaborator at another university) or exchange data with the wet-lab. It is
also useful if the user wants to perform further processing of the data by resources or
programs not currently available in the CJ.

1.2.4 Annotations

Annotations are additional entries created directly by the user that can be attached to entries of
the other three functional categories. All annotations are searchable. Typically, annotations
are notes and comments that help explain and/or highlight key features of the entry to which
it is attached. A variety of content types are frequently used for annotations, including text,
images and urls. In addition, entries can be searched indirectly by searching the content of
annotations attached to entries.

1.3 Entry Modification

Most CJ entries are read-only objects. They contain data that should not be changed, for
example the output of laboratory experiment (or of a computational experiment performed
through the CJ). The underlying philosophy of the CJ is to record events (experiments and
the results they generate) as they occur. Experiments frequently are repeated with different
inputs and refined over the course of time. These changes are treated as new events to be
recorded – not as modifications of an existing object.

 3

Every entry carries a committed attribute. If this attribute is True ("the entry is committed"), it
is read-only and may never be modified by anyone in the future. Many entries are
automatically marked committed upon creation, such as when data is imported from an external
source. This attribute plays a fundamental role in the CJ environment. It promotes sharing
and collaboration among CJ users, since it provides assurance that the entry will never be
deleted or modified regardless of the owner of the entry. If the inputs to an experiment are
committed, then the user is assured that the dependencies of an experiment will remain
available so that the experiment can be reviewed and/or re-executed in the future.

Even for entries not yet committed, modification is carefully controlled in the CJ environment.
All modification is restricted solely to the original creator of the entry. Until the entry is
committed, the owner is able to save and modify the entry as often as he/she chooses.
However, an entry that remains in an editable state cannot be used as a dependency of another
entry. For example, you cannot run an experiment based on a workflow that is in an editable
state -- because the content and/or parameter settings in the workflow might be changed after
the experiment is run, and losing the details of the experiment definition. Therefore, you must
use the Commit operation to set the committed attribute for an entry, before you can use it in
other contexts. Note, however, that once you have set the committed attribute, that you will
not be able to modify the entry.

For committed entries a browser (an editor with all operations that modify the data
removed/disabled) are provided to view the data. Likewise, if you open an entry owned by
another user, the entry contents will be opened in a browser, since you can never modify an
entry owned by another user.

1.4 Entry Dependencies

The CJ environment recognizes and maintains dependency information among entries as they
are created. Some examples of dependencies include:

1. Each experiment output is dependent on the experiment definition.
2. An experiment definition depends on the workflow it executes, and each of the data

sources attached to the workflow inputs.
3. A workflow definition depends on the resource and workflow definitions used in its

implementation.

This dependency information provides two major services:

1. Assurance of a complete provenance record for generated data.
The CJ does not allow the removal of an entry if other entry(ies) depend upon it. This
facilitates the sharing and reuse of data, since a CJ user incurs no risk of the loss of the
data when he/she uses the results generated by another user as input to a new
experiment.

2. Convenient access to related data / information regardless of naming conventions,
author, etc. Embedding this information directly in the CJ infrastructure, relieves the
user of many of the responsibilities of maintaining documentation of experiment
dependencies, generating and following naming conventions for files to locate related
data, etc. This facilitates collaboration within large teams and among teams since this

 4

dependency information is available through a common interface for all entries in the
CJ environment. The dependent (and corresponding dependency) sub-viewer in the navigation
view, provide immediate access to the recursive requirements for (dependents of) the
selected entry in the navigation view.

1.4.1 Navigation by Dependency

The CJ environment provides navigation tools based directly on the dependency information
that is automatically collected and maintained among entries. The SubNavigator, Dependent
Manager , provides a tree-based view of all entries which depend directly, or indirectly, on the
entry selected in the primary Navigator view. (See Section 3 for details about the Navigator
view.) At the top level appear all entries that directly depend on the selected entry. Beneath
each of these entries will appear the entries that directly depend on this entry, and so on.

This sub-navigator provides a very focused view of entries closely related to an entry of
interest. It is able to collect these entries regardless of the owner and/or containing journal.
This reduces the user burden for carefully organizing the layout of files in the file system to
keep related data in the same or related directory. It also eliminates the tendency to make
copies of data, in order to keep it close to related experiments when the data is used as an
input to multiple experiments. The SubNavigator, Dependency Manager, provides a similar view
of the entries on which the selected entry depends.

1.5 Workflows

A workflow is a graphical representation of a computational experiment. This section describes
workflows and their components.

1.5.1 Resource Definition

In the CJ, a resource is the graphical representation of a core computer program. This set of
core programs is extensible. Section 2.4.1 provides details of how to enter a new resource into
the CJ environment via an XML description. Figure 1 displays an instance of the BLASTn
resource.

Figure 1. BLASTn resource

Each resource has three principal components:

1. Input Port(s) represents a data input to the program, for example the query sequence
supplied to the BLASTn program.

 5

Input ports are represented by a small triangle pointing into the block and a label,
identifying the specific input. Some programs accept optional inputs, which are not
required for the program to execute properly. These ports appear shaded rather than a
solid color.
Help information supplies additional information about the type of data required and
expected content.

2. Output Port(s) represents data generated by the program, for example, the blast report
containing the results of a BLASTn run.
Output ports are represented by a label, identifying the specific output, and a small
triangle pointing out of the block,

3. Parameter(s) are arguments to the program that control its execution behavior. For
example, the expectation value supplied to BLASTn affect the uniqueness of the
alignments. By setting the expectation value to 1, we want to get one chance hit with
this score to our query using this particular database.
Parameters do not have a graphical representation. They appear as properties of the
resource in the Properties View when a resource instance is selected in the Workflow
Editor.

1.5.2 Workflow Definition

Generally, however, a user wants to define a more complex experiment than simply executing
a single core program. A data source can be used as an input to one resource (program) and
the output of this resource used as input to another resource, and so on.

Another aspect of an experiment that a user may want to control is the number of variables.
In addition to the data source input(s), each parameter represents another variable in the
experiment. In order to meaningfully compare the results of two experiments, one may want
to ensure that various resource parameter values are the same for both experiments.

The Workflow Editor allows the user to conveniently control both of these aspects of more
complex experiments: which resources appear in the experiment and how they are connected;
and which parameter values are constant and which remain as experiment variables.

The Workflow Editor is defined in detail in section 2.4. Here we highlight its role in helping
users define computational experiments. Workflows closely resemble resources described in the
previous paragraphs. A resource represents a basic computer program. The Workflow Editor
essentially allows the user to construct more complex programs by graphically combining
simple programs (resources and other workflows). A workflow has the same three
components as a resource:

1. Input Port(s).
2. Output Port(s).
3. Parameter(s)

Plus a fourth component:
4. A connected set of resources defining the functionality of the workflow.

 6

The user defines the functionality of a workflow by placing instances of resources (and/or
other previously defined workflows) and drawing connections from output ports to input
ports.

The Workflow Editor also provides actions to add input and output ports to a workflow. These
correspond to the inputs (outputs) of basic resources, the external interface of the workflow
being defined. The user draws connections from these input (output) ports to appropriate
input (output) of the resources defining the functionality of this workflow.

Finally, to complete the workflow definition, the user must assign values to the parameters of
each of the resources in the workflow. For each parameter the user has two choices, either:

1. assign a specific value for the parameter. In this case, the parameter value for use
(execution) of this workflow is guaranteed to be this value. This becomes a constant
for this workflow.

2. Promote the parameter to the workflow interface. This creates a parameter for the
workflow definition with the same name, type and value restrictions as the original
parameter. This parameter becomes a variable for the workflow being defined. Each
time the user executes an experiment based on this workflow, he/she must provide a
value for this parameter; and when the experiment is run, the user supplied value will
be used as the value of the parameter in the resource from which it was promoted.

Figure 2 provides an example of a simple workflow definition.

Figure 2. Workflow definition.

1.6 Experiments

1.6.1 Experiment Definition

In order to run an experiment, you implicitly create a new entry containing an experiment
definition. In addition to specifying the workflow to execute, you must:

 7

1. Assign a data source for each input port of the workflow.
To do this, you select an entry containing the data to supply for this input.

2. Allocate a new entry for each output of the workflow.
To do this, you simply supply a unique name for the entry. The system will
automatically generate the correct values for ownership, data type and remaining fields.
When the experiment completes, the output data generated for the corresponding port
will be stored in this entry’s content.

3. Assign a value to each parameter of the workflow.

The experiment definition stores this information and automatically generates links between
the various components of the definition, maintaining critical provenance information.
Whenever you select an entry representing an experiment output, you can retrieve the
experiment definition from which it was generated. This allows you to view all the parameter
settings for the experiment and the data sources supplied to the experiment. If a data source
was itself an output of an earlier experiment, you can likewise trace back its provenance.

At the completion of an experiment definition, it is automatically executed on the computer
cluster.

1.6.2 Experiment Execution

An experiment definition can be executed only once. If you want to execute a workflow again,
say with different input and/or parameter values, then you will create a new experiment
definition. Then you will be able to easily compare the results from the two different runs;
and in the future easily be able to determine the differences between the experiments by
tracing the output provenances.

If you decide that the output(s) of an experiment are no longer useful, then you can delete the
corresponding experiment definition. Whenever you delete an experiment definition, it will
also delete all output entry(s) generated by that experiment (after warning you of this effect).

The CJ handles all the details of running the computational experiment on the computer
cluster for the user. You can monitor the progress of the experiment using the Queue Manager
view, that typically appears in the lower right corner of the CJ window. This view provides a
hierarchical view of all jobs running on the cluster. See section 5.6.2 for details about
interacting with this view. In addition, there is the menu command, Check Experiment Progress.
This command reports if the experiment is still running, or if it has completed successfully, or
with errors.

1.6.3 Experiment Error Object

Most experiments will complete successfully, since many consistency and validation checks are
performed as you define the workflow and the experiment definition. “Success” in this
context means that all of the programs included in the workflow definition were able to
execute without generating errors or crashing.

 8

If an experiment terminates with errors, an error object is generated for the experiment that
contains details of the individual steps comprising the experiment.

Internally, a data dependency graph is generated for the programs (resources) appearing in the
workflow. A separate job is created and submitted to the batch queue system on the cluster
for each of these programs. These jobs are scheduled by data dependency, so that a job begins
only after the job(s) that generate its input(s) have completed successfully.

The error object contains sub-entries for each program executed, including the command script
used to start the execution and the data written to stderr and stdout during execution. In
addition, it contains data from intermediate results. Intermediate results are the data generated
on the output(s) of resources that are used only internally as the input to another resource.
With this additional information, the user will be able to understand why the experiment failed.

2 Example
2.1 Introduction

In this chapter, we will define and execute a simple computational experiment. This example
provides a basic introduction to the CJ environment’s capabilities. Menu items that do not
pertain to the example are not discussed in this chapter, but will be covered in a later chapter.

From the introduction, we learned that journals are an organizational device. The content that
can be contained in journals includes other journals, input information, output information,
annotations, and experimental design data (experimental design data are characterized by
workflows). We will be addressing each of these forms of data in this example.

The experiment we will be implementing in this example is trying to identify a protein that
may be a potential target for drug therapy in treating malaria. A block diagram of the
experiment we are going to replicate can be seen in Figure 3. We are first going to find similar
proteins to the human casein kinase enzyme using BLAST. We are then going to create a
global alignment using the sequences of the similar proteins that were retrieved by BLAST
using CLUSTALW. Then, using the hmmbuild tool of HMMER, we are going to build a HMM
model based on this multiple alignment. After we have this model, we will calibrate it. We will
then run it against the proteins in the Plasmodium falciparum genomic database (PlasmoDB) to
identify proteins that may be similar to this model using the hmmsearch tool of HMMER. We are
interested in the divergence between P. falciparium casein kinase and its vertebrate hosts. If
there is enough divergence, then specific inhibition of this enzyme offers itself as a potential
drug therapy for malaria.

 9

Human
Casein
Kinase

BLAST
Extract
Sequences ClustalW

hmmbuild

hmmcalibrate

hmmsearch
P. falciparum
DB

Related
Proteins

HMMER

Figure 3. Flow chart of the experiment.

To implement this example, we will:

1. Create a new journal
2. Create entries that define the experiment
3. Create an annotation
4. Execute the experiment

2.2 Creating a new journal

The creation of a journal occurs in the Navigator Shell of the CJ environment. In the Navigator
Shell, there is an icon that resembles a book that will create a new journal. See Figure 4 to see
the icon.

Create a new journal icon

Figure 4. Create new journal icon in the Navigator Shell.

 10

With your mouse, click on the icon to Create a new journal. When you do this, a dialogue box
will appear (See Figure 5). The first thing we will have to specify is in what journal we want
this new journal to be placed. The hierarchal structure of the CJ environment allows for
journals to be stored in other journals. To see a list of journals that you may place this new
journal in, click on the Browse… button.

Figure 5. Create New Computational Journal dialog box.

Another dialogue box will appear (See Figure 6). There are two filtering options within the
dialogue box that can affect the names of the journals options that will appear. By default,
both options will be selected. When “Use Journal Working Set” is selected, only journals that
appear in the user’s working set (defined in the CJ preferences) will appear in the list. When
“Only Owned by Current User” is selected, only journals that the user has created will appear
in the list. We will place this new journal in our root journal (For each user account, a root
journal entitled username is automatically created for the user.) In this example, our root
journal is called demo, which is our username for this example. Click on the demo journal, and
then click the OK button.

Figure 6. Dialog box showing the list of journals.

Next, the Group Access will have to be specified in the Create New Computational Journal dialogue
box. We will specify that the Group Access will be All. The last thing that needs to be
specified is the title of this new journal. The title of this journal will be Example Experiment.
Figure 7 will show how the dialogue box will appear with this information.

 11

Figure 7. Completed Create New Journal dialog box

To create the journal, click on the Finish button. The new journal, Example Experiment, will
now appear in our root journal, demo, in the Navigator Shell (See Figure 8).

Figure 8. Navigator Shell showing the new journal just created.

2.3 Creating a new entry

Now that we have a journal, we can add entries to it. For this example, we will be making
different types of entries. We will make workflow entries to implement our experiment and a
FASTA entry to use as the input when we execute our experiment.

We are first going to implement the HMMER portion of the experiment that is mapped out in
the block diagram in Figure 3. We will need to create an Entry to represent this portion of the
experiment.

To create a new entry, click on the icon to Create a new entry in the Navigator Shell (See Figure 9).

 12

Figure 9. Create a new entry icon.

A dialogue box will then appear (See Figure 10).

Figure 10. Dialog box for Create New Computational Journal Entry.

We must specify the Content Type of the entry. To select a content type, click on the Browse…
button. Another dialogue box will appear (See Figure 11).

Figure 11. Dialog box showing the list of Content Types.

 13

In this example, the first entry we are going to make is a workflow, so we need to click on
Workflow, and then click on the OK button. By default, the journal that we have active will be
selected as the journal in which this entry will be placed. We are going to use this default
setting in this example.

Again, the Group Access must be specified. In this case, it will determine who will be able to
read the content of this Entry. We are going to set the Group Access to All. If None was
selected, then only the owner of this entry could see the content of this entry. Next, we have
to give this Workflow a title. For this entry, we will entitle it HMMER Flow. To create the
Entry, we need to click the Finish button.

In the Navigator Shell, we should see our new journal and our new entry within the journal .
Click on the new HMMER Flow entry to make it active in the Editor Area. Figure 12 shows us
what we should be seeing.

Editor Area
New entry we just created

Figure 12. Shows the new entry, HMMER Flow, and the Editor Area.

2.4 Using the Workflow Editor

We will create the graphical representation of this experiment in the Workflow Editor. The
Workflow Editor has a Palette of options that we can use to build our experiment.

2.4.1 Adding Resources to the Workflow

Before we start adding resources to this workflow, we need to consider our experimental
design. We need to consider the resources we are planning on using and what these resources

 14

require as input and what output these resources produce. With this in mind, we can map out
how these different resources can be connected.

For example, from the flow chart in Figure 3, we see that there is a block called Extract
Sequences. This block is there because the output of the BLAST is a report. This is not an
input format that is compatible for CLUSTALW. CLUSTALW accepts FASTA data as input,
so we need to have a resource that can extract the sequences from the BLAST report, and
retrieve their FASTA sequences to present them to CLUSTALW. We need to keep in mind
what we can use as input and what output is produced by these resources.

In the HMMER Flow, we are going to add three different HMMER resources. To add
resources, we need to click on Resource option in the Palette. We then need to move the cursor
into the Editor Area to have the Resource to Add dialogue box appear. For this example, the
resources that can be viewed in the Working Set will most likely be different from what a new
user will see. This is due to the fact that in the CJ environment, resources can be added easily.
It is likely that resources will be added by the time many new users read this manual. We want
to use HMMER resources. These resources are located in the //Sequence Resources - Core
Journal. We need to click on the //Sequence Resources – Core journal, and then we need to click
on the Update button to view the resources that are contained in this journal. Figure 13 shows
what the dialogue should look like.

Figure 13. Resource to Add Dialog box.

The first resource we are going to add is the hmmbuild resource. To do this, we will click on
the hmmbuild and then click on the OK button. Now, place the cursor over the Editor Area and
click on the location where we want the resource placed.

 15

The next HMMER resource we will be adding is the hmmcalibrate resource. When we click on
the Resource option in the Palette, the dialogue box will show the resources in the //Sequence
Resources – Core journal. We need to click on the hmmcalibrate and click on the OK button. We
then place the hmmcalibrate resource into the Editor Area. This same procedure is repeated for
the hmmsearch resource. Figure 14 shows what the Editor Area should look like after the three
resources have been added.

Resources that
we have added

Figure 14. Resources added to the HMMER Flow.

2.4.2 Defining Workflow Inputs and Outputs

We now have to handle the inputs and outputs of these resources. The inputs to the resources
appear on the left of the resource blocks. The outputs appear on the right of the resource
blocks. The inputs and outputs that are aligned with the solid black arrows represent things
that are required. The inputs and outputs that are aligned with the gray arrows are optional.
In this example, we see that the hmmbuild tool needs the input of a multiple alignment. To
specify this, we will click on the Input option in the Palette and then click on the area of the
Editor Area where we want the input located. In this example, we are going to put the Input in
the left-hand side of the Editor Area. With this Input block active, if we look in the Properties
perspective (below the Editor Area), we will see the property Port Name with the value Input
(See Figure 15). To give this port a more meaningful name, change the value from Input to
Multiple Align.

Now, we need to connect this port, Multiple Align, to the appropriate port in the workflow. To
do this, we need to click on the Connection option in the Palette. We then click on the Multiple
Align’s green arrow then we click on the black arrow of the Align input port of the hmmbuild
block. An arrow will appear connecting the input to the resource. Figure 16 shows what
should appear in the Editor Area when the Multiple Align has been connected.

 16

Changed the name of the port

Figure 15. Input port added to the HMMER Flow and name change.

Figure 16. HMMER Flow with Multiple Align connected to hmmbuild’s Align input port.

Two of the resources have additional input options. Some of these inputs happen to be
outputs of the other resources in this workflow. The hmmcalibrate resource has Alignment as an
input port, this input comes from the hmmbuild resource’s HMM output port. These ports
need to be connected. To do this, click on the Connection option in the Palette and click on the

 17

HMM output arrow of the hmmbuild resource, and then click on the Alignment input arrow of
the hmmcalibrate resource.

Next we need to address the inputs for hmmsearch resource. The HMM input port needs to
be connected to the hmmcalibrate resource’s Calibrated output port. The SeqDB input port needs
a protein database in FASTA format. This will require us to add another Input block to this
Workflow. We will entitle this Input as Search DB. We then need to connect the Search DB to the
SeqDB input port of the hmmsearch resource.

The next thing we will address is the output port of the hmmsearch resource, Matches. To do
this, we click on the Output option in the Palette, and place the Output block in the Editor Area
near the hmmsearch resource. To give the Output block a more descriptive and meaningful
name, we will change the port name of Output to Related Proteins in the Properties perspective.
When all of the inputs and outputs have been connected, the workflow will look like Figure
17.

Figure 17. HMMER Flow with all the Resources, Inputs and Outputs connected.

2.5 Setting Properties

The Properties perspective is where we can set the properties of the blocks contained in the
workflow (HMMER Flow) that we just created. To set the properties of the blocks in the
HMMER Flow, we need to click on the block whose properties we want to set.

If we click on the resource blocks, the properties that we can set will appear. In this example,
we are using the default values, so we do not need to change any of the values. In the next

 18

workflow that we create, we will change a value. We are now ready to save and then commit
this workflow to the CJ environment.

2.6 Saving the Entry

To save this workflow, we need to go to the File Menu on the Menu bar of the workbench
window. We select the Save option in the File Menu. This saves the workflow. We next need
to commit the workflow. To do this, we go to the File Menu and select Commit. In Section 1.3
there is a detailed explanation of the Commit process. It should be stressed that once a
workflow is committed, it cannot be altered/edited. This makes the Commit option different
than the Save option. Items that are just saved can be edited multiple times and resaved. Once
the HMMER Flow has been committed, it is ready to be used in the CJ environment.

2.7 Adding Workflows to other Workflows

We are now ready to implement the rest of our experiment that is mapped out in Figure 3.
We will need to create another Entry of the Workflow Content Type within our Example
Experiment journal entitled Casein Comparison. Figure 18 shows what the dialogue box should
look like with these settings.

Figure 18. Completed Create New Computational Journal Entry dialogue box.

The resources we will be adding to this workflow are blastp and ExtractSeq (Extract Sequences
from BLAST report). To add these resources, we need to click on the Resource option in the
Palette. These resources are in the //Sequence Resources – Core journal. We first need to click on
this journal, then we click the Update button. We then need to click on blastp and then click the
OK button. We then place this resource in the Editor Area. We repeat this process for the
ExtractSeq resource and the clustalw MA resource.

 19

The next thing we need to add is the HMMER Flow that we have created in the previous
sections. To do this we click on the Workflow option in the Palette. To find this workflow, we
need to look in our Example Experiment journal that we created. This is the journal that
contains HMMER Flow. To look in this journal, we click on Example Experiment and then click
the Update button. We then select the HMMER Flow and click the OK button. We then place
the HMMER Flow in the Editor Area.

Again we will have to provide the proper inputs and outputs for the workflow. The resources
and the inputs and outputs must then be connected. Figure 19 shows what the Casein
Comparison workflow should look like after all the inputs and outputs have been added, and the
connections have been made.

Figure 19. Casein Comparison Workflow with all the Resources, Inputs and Outputs connected.

We need to set the properties of the resources in this experiment. We want to change some of
the default property settings for the blastp resource. To do this, we need to click on the blastp
resource. In the Properties perspective we need to find the property called Database. In the
value area for this property, we need to type nr, and for the Expectation Value, we need to set it
to 0.001.

From Figure 20, we can see that there are check boxes by the names of each Property. If we
check these boxes, we are allowing users to specify the values of these properties during the
execution of this workflow. By not checking the boxes of properties, we make the values of
the properties fixed to some specific value that we provide or to the default value. This means
that every time we execute this workflow, these values cannot be altered.

 20

Database property
value changed to nr

Figure 20. Setting Database parameter value.

We are using the default settings for the ExtractSeq resource and the ClustalW resource, so we
do not need to change the values of any of these properties. The workflow is now completed.
This workflow needs to be saved then committed.

2.8 Creating a FASTA Entry

From the design of this experiment, we can see that we will need FASTA inputs for the blastp
resource. These inputs must be within the CJ environment for the CJ resources to have access
to them. This means we need to make entries to represent these inputs.

To keep these forms of data better organized, we encourage users to make separate Journals to
store different forms of data. For this example, a journal has been created entitled
ProteinSequences to store this Entry that we are going to create. Before we start creating a new
Entry, make sure that the Journal we want the Entry to be placed is active.

We will go through the same process of creating an Entry that we performed when creating a
Workflow, but in this instance, the Content Type will be FASTA. We will entitle this Entry as
human casein kinase 1. Then, we will click the Finish button. In the Editor Area, a blank Entry
will appear. The FASTA report for this protein can be found at NCBI. The report can be
copied and pasted into the blank Entry. It should be noted that the FASTA data does not have
to be copied and pasted; it can be typed in by the user, or imported. To import files, we would
use the Import from file option. This option selects files from the user’s personal machine.

 21

2.9 Adding an Annotation

Annotations are very valuable. They provide a means to attach additional descriptive material to
entries. Common uses of annotations include: providing a detailed description of an
experiment; entering the hypotheses of an experiment; highlighting the key results in an
experiment output; and linking the results of one experiment to the results of another
experiment. It is in the Annotations that we can provide the detailed description of our
experiments and remind ourselves of the purpose of the experiment. Annotations allow us to
explain what the experiment is looking for; it provides an area where we can place our
hypotheses for our experiments.

Annotations can make our experiments more meaningful to other CJ journal users. We can
relate to other users why we set up our experiments in certain ways and explain the logic of
our experimental design and its progression.

It should also be noted that Annotations can be searched based on keywords. This makes it
important for the language in the Annotations to be descriptive.

To create an Annotation, we will use the Sub-Navigator entitled Annotations that is located
below the Navigator Shell. In this example, we are going to add an Annotation to the workflow
we created called Casein Comparison. We need to select the Casein Comparison workflow by
clicking on it. Now, we need to click on the Create new Entry to annotate selected Entry icon (See
Figure 21.

Subnavigator
for Annotations

Create new Entry to
annotate selected Entry icon

Figure 21. Subnavigator for Annotations and the icon to Create a new Entry to annotate selected Entry.

 A dialogue box will appear. Since Annotations are a type of Entry, we will go through similar
steps that we have previously gone through. We need to specify the Content Type. For this
Annotation, we will select Plain Text. We will entitle this as Experimental Design. The completed
dialogue box will look like Figure 22.

 22

Figure 22. Completed dialog box for Annotation.

Once we click on the Finish button, in the Editor Area, a blank plain text document will appear.
We can now type our description for this experiment. There is no spell checking capability in
this editor, so be careful when typing. Once we are done typing this Annotation, we need to
save it and commit it.

If we click on other entries that we have created in this example, we will not see the Annotation
we created in the subnavigator. Only when Casein Comparison is selected will we be able to see
the Experimental Design Annotation in the subnavigator.

2.10 Define Experiment from Workflow

Now that we have created our workflows, we can define our specific experiment from our
Casein Comparison Workflow. To do this, we need to have the Casein Comparison Workflow
selected. Next we need to go to the Experiment menu bar option. From the drop down menu,
we need to select the Define Experiment from Workflow option. An Execution Wizard dialogue box
will appear (See Figure 23).

Figure 23. Execution Wizard for defining an experiment from a workflow.

 23

This dialogue box will allow us to change the name of this experiment. We will call this
Human Casein Comparison-Run.1. We will then click on the Next button.

Another dialogue box will appear. In this dialogue box we need to provide the inputs for the
experiment. We first will click the Browse… button by the Amino Acid Sequence input area. The
Amino Acid Sequence we will use can be found in the Journal entitled Protein Sequences. The input
data is entitled human casein kinase 1. We will select this Entry. Next, we need to select the
input for Search DB. The input for this can be found in the Amino Acid Sequences journal. The
input we will select is entitled PfalciparumAnnotatedPns.

A new entry is implicitly created for the output of this experiment. This dialog allows the user
to assign the name for this entry. The dialog is initialized with a default name consisting of the
associated port name and a digit. For this experiment we choose to provide a more descriptive
title for the entry: Casein Kinase Related Proteins.1.

Next we need to define the Execution Controls. First, we need to specify the PBS (Portable
Batch queue System) Queue. All jobs executed on the cluster are controlled by a queuing
system, PBS, to facilitate sharing of the resources. Many different queues are defined on the
system that control priority of the jobs submitted to them and the range of resources available
to those jobs. Before an experiment is run, the project supervisor and/or the system
administrator needs to be consulted about which queues can be used and the restrictions they
impose on jobs submitted. It is the user's responsibility to choose an appropriate queue for the
defined experiment. If inadequate resources are available in the selected queue, for example,
maximum execution duration, the experiment will not be able to complete successfully.

We then need to decide if we should use the Debug option. If the Debug option is selected, an
Error Object will be generated for the experiment. Even if it the experiment completes
successfully, an Error Object will be generated. The additional information collected in the
Error Object can help a user understand why an experiment does not generate the expected
results even though it completes successfully. We will select this option. The completed
dialogue box will look like Figure 24. We now need to click the Finish button.

Figure 24. Execution Wizard dialog box

 24

After we click the Finish button, we will see a graphical representation of the experiment in the
Editor Area (See Figure 25).

Figure 25. The graphical representation of the experiment.

We can track the progress of the experiment through the Queue Manager. By clicking the Refresh
button in the Queue Manager’s tool bar, we can see the progression of the experiment (See
Figure 26).

Refresh button

Figure 26. Queue Manager perspective and the Refresh button.

There is another option that allows us to track the experiment’s progress. Selecting the Check
Experiment Progress action from the Experiment Menu Bargenerates a dialogue box informing the
user of the experiment’s progress.

When the experiment has completed, we can see that a message in the Queue Manager will
report that the experiment has finished (See Figure 27). If we exit the CJ environment with an
experiment that has recently completed (or still running), when we return the Queue Manager

 25

will show us show us the “Recently Finished …” message if the experiment has finished. This
message will only appear once. The next Refresh will not say anything about the completed
experiment(s).

Shows the experiment has completed

Figure 27. Shows that the experiment has finished execution.

The experimental output is automatically committed as soon as the experiment completes.
This feature allows us to use these output(s) as datasource(s) for a new experiment. The results
of the experiment can be accessed by either clicking on the Casein Kinase Related Proteins.1 data
block in Casein Comparison-Run.1, or by clicking on the Casein Kinase Related Proteins.1 in the
Navigator Shell. The results will appear in the Editor Area (See Figure 28).

Figure 28. Shows the results of the experimental run.

Further analysis needs to be performed to see if there is enough divergence between the P.
falciparium casein kinase and its vertebrate hosts.

 26

3 Navigation

The CJ environment provides a variety of Navigators, tools that provide a hierarchical view of a
collection of Entries. Each Navigator provides a virtual organization of the Entries based on
one or more relations among the Entries. This allows the user to see the data organized to
match a specific activity by selecting the Navigator most appropriate for the task. In addition,
each Navigator provides filters that will restrict the number of Entries displayed.

Navigators typically do not include all Entries in the CJ environment. Each navigator attempts to
restrict the number of Entries presented making it easier to find the Entries of interest for the
user’s current activities. If the user does not find an Entry that he/she is looking for in the
Navigator Shell, the user may want to change the Navigator being used and/or the filters it
applies. Alternatively, the user may use the search tool to query across the CJ environment.
These alternatives are described in detail in the following sections.

Entries in the CJ environment are organized in Journals that can be viewed from the Navigator
Shell view. Journals are organization devices that contain other Journals and Entries. The Journal
representation allows the users to organize their computational experiments and related data.
We can see this organizational structure in the Navigator Shell view. This view presents Entries
in the default user assigned organization. Each user is allocated a top level Journal, and then
typically defines his/her Journals beneath this local root; so this view provides an organization
that reflects Entry ownership.

3.1 Entry Actions

Most operations on Entries are invoked from the Navigator view. In this section, operations on
entries will be discussed.

3.1.1 Open an Entry

To edit/view the contents of an Entry, simply double click on the Entry in the Navigator. The
CJ will implicitly locate an editor/browser appropriate for the Entry content, based on its
content type; and open it in the Editor Area. Modification of Entries is carefully constrained in
the CJ environment. The user can edit an Entry only if:

1. The user is the owner of the Entry; AND
2. The Entry has not been committed. An Entry that has been committed can no longer be

modified.

If the user is not allowed to edit the Entry he/she selects to open (for either of the reasons
above), the content will be presented with a browser, an editor with reduced capabilities that
does not permit modification of the contents. If the user wants to make modifications to the
object, he/she can select the browser’s Save As action, to create a new Entry containing a copy
of the data in the original Entry.

 27

3.1.2 Icon Menu Bar Options

Several actions are available from the icon menu bar at the top of the Navigator view.

3.1.2.1 Search

The Search functionality allows us to search for Entries by specifying various search criteria. We
can limit the search by specifying the Journal(s) in which to look, by the owner(s) of the Entry,
by the content type of the Entry, by key words contained in the title, by keywords contained in
the content of the Entry, by limiting the search to the Journals in the user’s Working Set, and/or
by if the Entry has been committed or not.

Through the Search tool, users with accounts can search through all the Journals that they are
allowed access and view other users’ data. This permits the sharing of experimental designs
and results. Due to the read-only capabilities of this search process, the original data cannot
be tampered with. If a user wants to alter any of the data (i.e. adjust test parameters), he/she
must create a new Entry containing a copy of the original Entry content (using the Save As
action).
An example of a Search follows. First, select the Search icon in the Navigator Shell (See Figure
29).

Search for Entry icon

Figure 29. Search icon in the Navigator Shell

After clicking on the icon, a dialog box will appear. In the dialog box, the user needs to
specify the search criteria he/she wants to use. In this example, a search for Entries that are of
the Content Type FASTA will be performed. Figure 30 shows what the Entry Search dialog box
looks like.

 28

Figure 30. Entry Search dialog box.

From this dialog box, the user will be by default constrained to only searching for Entries that
are in their Working Set. To broaden the Search, to allow Entries outside the user’s Working Set,
the user has to uncheck the Use Working Set option. Figure 31 shows how the Content Type(s)
option has been expanded.

Unchecked option Broadens Search
options

Figure 31. Expanded Content Type(s) option

To search for FASTA Entries, the user selects the FASTA option then clicks the Update button.
Figure 32 shows an example of the Search dialog box after Update has been clicked.

 29

All the FASTA
Entries that meet
specified criteria

Figure 32. Search dialog box after Update has been clicked.

Several FASTA Entries appear for the user to select. If too many options appear, the user can
further restrict the search space by specifying further Search criteria. For example, the user
can limit the Journals to Search in. The user can select any (or all) of the Journals. To select
more than one of the Journals to search, the user has to use the Shift-Click option (i.e. hold the
shift button down and use the mouse to click/select the Journals of interest). In this example,
the Journals of interest are entitled ExperimentsHA/Nucleotide Sequences and
ExperimentsHA/Protein Sequences (Note: these Journals are located in the CJ environment for the
purpose of testing. They may not persist after the release of this manual). To perform the
Search with these additional restrictions, the user has to click the Update button (Figure 33).

Fewer FASTA
Entries returned

Figure 33. Search with additional restrictions.

 30

The user can further restrict the search space by specifying more criteria, or the user can
loosen restrictions by removing certain search criteria. When the user finds the Entry of
interest, he/she needs to click on the Entry.

In this example, the beta-preprotachykinin Entry will be selected. Once the Entry has been
selected, another dialog box that shows the Entry’s properties will appear (Figure 34). To view
the selected Entry in the Editor Area, click the Open button.

Figure 34. Entry Properties dialog box for the selected Entry.

Variations of this search dialog are used throughout the CJ environment. Whenever the user
is asked to select an Entry for a specific function, a search dialog is provided to help the user
locate the Entry. For example, when defining an experiment, the user must provide an Entry
for each experimental input. Instead of requiring the user to enter a unique identifier from
memory, the user makes the selection via a search dialog. When the user input must satisfy
particular constraints because of the context of is its usage (for example, an experiment input
must be committed, and must have a content type compatible with the experiment’s input type),
the search dialog will constrain the search criteria to satisfy those requirements.

3.1.2.2 Refresh

The Refresh from Persistent Store will update the Navigator Shell view to reflect the current shared
state of the CJ environment. This action may be required to see new Entries created by other
users after one has started his/her session. Using the Refresh option will not reflect a change
made by another user (for example, editing a workflow definition) if the user has already
accessed the Entry in his/her local environment. To see such changes, the user must exit
his/her session and restart. It is seldom necessary to do this, however, because typically the
user only accesses an Entry owned by another user after it has been committed, and therefore
cannot be changed even by the owner. See Figure 35 to see the Refresh icon.

 31

Refresh from Persistent Store icon

Figure 35. Refresh from Persistent Store icon.

3.1.2.3 Create Journal /Create Entry

The creation of a new Journal and the creation of a new Entry are covered in Sections 2.2 and
2.3 of this manual.

3.1.2.4 Delete Selection

To delete one or more Entries, select it (them) in the Navigator view, and then click on the Delete
Selection icon (See Figure 36).

Delete Selection icon

Figure 36. Delete Selection icon

 32

To ensure the persistence of data in the collaborative CJ environment, delete operations are
carefully regulated:

1. Only the owner of an Entry can delete it; AND
2. An Entry cannot be deleted if any other Entries “depend” on it.

If the Entry selected for deletion has dependencies AND the user owns all of the
dependencies, then the user will get a warning that is similar to this:

If you delete this entry, all of its dependencies (which are listed in the message) will
also be deleted, do you want to continue?

For example, if the user deletes an experimental run, not only will the run be deleted, the
experimental output(s) generated by the run will also be deleted. This is a convenience for the
user, so the user does not have to work his/her way down to the tips of the dependency
graph, delete these Entries, move back a level and repeat.

If a user tries to delete an Entry, and the user does not own all the dependents, then the Entry
will not be deleted and the user will get the following error message:

This entry cannot be deleted, since it has one or more dependents you cannot
delete. The Dependency Navigator may be helpful to investigate these
dependencies.

This protects shared data from being lost. For example, if a user uses data generated by
someone else, the user does not have to worry that the data was deleted to save disk space.

A list of dependencies follows:

1. Experimental outputs depend on the experiment.
2. An Experiment depends on data source(s) it uses.
3. An Experiment depends on the workflow(s) it executes.
4. A Workflow depends on workflow/resource instances it contains
5. A Workflow depends on any data source(s) it contains
6. Every Entry depends on the Journal in which it is created(so users cannot delete a

Journal if it contains any Entries).

The infrastructure of the CJ environment automatically maintains these dependencies. It also
supplies the Dependency Sub-Navigator to present these dependencies to the user.

3.1.3 Context Menu Options

Several additional actions are provided on the context menu that appears when the user clicks
the ring (rightmost) mouse button after selecting one more Entries.

 33

3.1.3.1 Show Entry Properties

To view the properties of an Entry, select the Entry of interest and the click on the ring button
and select the Show Entry Properties option. A dialog box will appear presenting all the
properties maintained for each Entry in the CJ. Figure 37 shows an example of this dialog.

Figure 37. Entry Properties dialog box.

If the user owns this Entry, he/she can use this dialog to modify many of these properties. To
permanently store the changes select the Save button at the bottom of the dialog. The Save
button will not appear in the dialog, if the user is not allowed to modify the Entry.

Several field values include both a name and an id. The id is provided primarily as a debugging
aid. Certain error messages may contain only an id (because the associated name could not be
retrieved at the time the error is encountered). This additional information in the Entry
Properties dialog can sometimes be useful to better understand such messages.

3.1.3.2 Delete

Deletion of selected Entries is covered in Section 3.1.2.4 of this manual.

3.1.3.3 Access Control

The group access attribute of an Entry controls which users in addition to the owner have
access to the Entry. A group is a name associated with a collection of CJ users. The system
administrator creates groups and can add and remove users from existing groups. A CJ user
can be a member of an arbitrary number of groups.

 34

To change the group access attribute of a selected Entry(ies), use the Access Control action. This
will present a dialog containing all group names to which the user belongs as shown in Figure
38.

Figure 38. Access Control dialog box.

The group of choice can be selected then the OK button must be clicked to save the new
setting.

3.1.3.4 Export

This action allows the user to create a copy of an Entry’s content on his/her personal machine.
When Export is selected, the user then must select the location and filename on his/her
personal machine in which to place the Entry, then click the Save button.

This action generates a copy of the data stored in the CJ environment. The original data
remains, unaltered in the CJ. If the user wants to share data that he/she has generated in the
CJ with other colleagues who do not have access to the CJ environment, he/she can use this
export tool.

Any changes that the user makes to the file on his/her local machine will have no effect on the
data stored in the CJ. If the user wants to use the locally modified data in the CJ environment,
the user must import the modified file back into the CJ environment. Importing a file always
creates a new CJ Entry (the import action is provided through the create New Entry action,
described in Section 2.3 of this manual).

3.2 View Options for Navigator Shell

Additional controls for the Navigator are provided by its pull-down menu. This menu is
represented with the solid-black downward pointing triangle to the right of the toolbar, below
the tab.

3.2.1 Navigator Filters

The user can select any number of filters to be applied to the Entries before display. An Entry
will appear only if satisfies the test for every selected filter. In addition, if an Entry is not
displayed because of a filter, then no Entries that would appear below this Entry in the

 35

hierarchical display will appear (even if they do satisfy all filters). So, if a Journal does not
satisfy one of the filters, none of the Entries in that Journal will appear in the Navigator, until that
filter is de-selected.

The filters that can be applied are:

1. Show only Entries in the user’s Working Set.
This filter applies to directly to Journals. The Working Set is a collection of Journals,
chosen by the user, which contains the Entries of interest to the user for his/her
current activities. The user can add/remove Journals from his/her Working Set to
reflect his/her current needs. If this filter is selected, only Journals that are in the user’s
current Working Set will appear in the Navigator – and as a result, the Navigator will
present ONLY Entries that appear in these Journals.

2. Show only Entries that the user has created.
With this filter active, only Entries that the user has created will appear.

3. Show only committed Entries.
With this filter active, only committed Entries, those that can no longer be modified will
appear.

3.2.2 Navigator Sorters

Sorters allow the user to control the order Entries appear in the Navigator. The selected sort
algorithm is applied to all Entries in the same hierarchical level.

The sorters available are:

1. Sort alphabetically
2. Sort by creation time
3. Sort by commit time.

If this sorter is used, all uncommitted Entries will appear before any committed Entry.

3.3 Sub-Navigators

The area directly below the Navigator is reserved for a Sub-navigator. The Sub-navigator provides
a specialized view of Entries related to the Entry selected in the main Navigator view. A variety
of Sub-navigators are provided, each one displaying a different set of Entries based on a specific
relationship among the Entries. Each of these will be described in detail in the following
subsections.

The user selects the active Sub-navigator from the pull-down menu located by the Navigator Shell
tab (See Figure 39). To open an Entry appearing in the Sub-navigator, simply double click on the
Entry, as in the main Navigator.

Only a limited number of actions can be initiated from Sub-navigators. Specific Sub-navigators
may include additional actions on their menu icon bar.

 36

Sub-Navigator Pull Down Menu

Figure 39. Sub-Navigator Pull Down Menu.

Another action that can be performed in the Sub-Navigator is Expand/Contract View. The
Expand/Contract Sub-Navigator option alters the size of the view. Changing the size of the Sub-
Navigator affects the size of the Navigator Shell view. The user can adjust the size to suit his/her
preference. The icon for this action can be seen in Figure 40.

Expand/Contract View icon

Figure 40. Expand/Contract View icon

3.3.1 Dependent Manager

This view allows the user to see all the Entries that depend on the selected Entry in the
Navigator Shell. A list of dependencies follows:

1. Experimental outputs depend on the experiment.
2. An Experiment depends on data source(s) it uses.
3. An Experiment depends on the workflow(s) it executes.
4. A Workflow depends on workflow/resource instances it contains
5. A Workflow depends on any data source(s) it contains
6. Every Entry depends on the Journal in which it is created (so users cannot delete a

Journal if it contains any Entries).

 37

In this view, the first level of this hierarchy includes all Entries that directly depend on the
selected Entry. Beneath each of these Entries will appear the Entries that directly depend on the
corresponding Entry (and so indirectly depend on the Entry selected in the main Navigator), and
so on. Figure 41 shows an example of what can be viewed in this Sub-navigator.

Shows the Entries that
are dependents of the
selected Entry.

Selected Entry

Figure 41. Sample view in the Dependent Manager.

This Sub-navigator is useful to determine how widely a particular piece of data or workflow
definition is used in experiments by any CJ users. If the user is considering deleting an Entry,
he/she may want to use the Sub-navigator to first investigate if it is used elsewhere.

Entries in this view can be deleted. The Delete Selection option is describe in Section 3.1.2.4 of
this manual.

3.3.2 Dependency Manager

This view allows the user to view the Entries that the Entry selected in the main Navigator
depends on. This view is effectively the inverse of the preceding Dependent Manager. This Sub-
navigator is particularly useful to observe the provenance of a particular piece of data.

3.3.3 Annotations

This view allows the user to view the Annotations of the Entries present in the Navigator Shell
view. An Annotation is an additional piece of information relevant to the associated Entry.
Users are free to attach whatever annotation(s) they find useful to another Entry. A few
examples of uses for annotation include:

1. Frequently, the significance of a data set can be concisely described by the owner in a
brief textual description.

2. A graph or an image of a dataset (perhaps generated by an external tool).
3. A reference (perhaps a URL) on which a workflow or experiment is based.

In addition to the normal operations for viewing the Entries in this view, this Sub-navigator
provides actions to create new annotations for the Entry selected in the main Navigator.

 38

3.3.3.1 Creating a new annotation

This action implicitly invokes the action to create a new Entry, which is fully described in
Section 2.3. The newly created Entry is automatically linked to the Entry selected in the main
Navigator as an annotation.

3.3.3.2 Annotation with an existing Entry

Annotating a selected Entry with an existing Entry uses a search functionality to find the
existing Entry. When this option is selected, a dialog box will appear that allows the user to set
specific search criteria (See Figure 42).

Figure 42. Search for Computational Journal Entries dialog box.

Once the criteria has been set, the user clicks the Next button and the search results are
presented to the user in another dialog box (See figure 43). The user selects the appropriate
Entry then clicks the Annotate button.

Figure 43. Results from Search for Computational Journal Entries dialog box.

 39

4 Workflow Editor

The Workflow Editor is used for creating/editing and viewing Workflows. There are two
general categories in which the creation of a Workflow falls:

1. A tool/utility for reuse, such as a step that can be used in a variety of experiments.
2. Defining an experiment or a specific component of an experiment.

Depending on the user’s intent for the workflow, different construction styles will be more
applicable than others. For example, if the user is more interested in reuse, the user will want
to promote many property values of resources. Also the use of input ports allows for a more
general use for the workflow since it is not set to a specific input. On the other hand, if the
user wants to create a very specific experiment, the user will want to set many of the property
values of resources and promote very few of them. Also, the use of DataSources may offer
more control of input to the resources.

4.1 Palette Options

Most Workflow Editor actions are invoked from its palette. The palette options are:

1. Select
2. Marquee
3. DataSource
4. Resource
5. Workflow
6. Connection
7. Input
8. Output

Most palette options are persistent, that is they remain in effect until another option is
selected.

4.1.1 Selection

The user activates the Select option to manipulate, alter property values, or access any input
ports, output ports or blocks in the Workflow.

The Marquee option allows the user to select several blocks/objects and operate on them as a
group. To use this tool, the user has to click on the mouse and drag the Marquee box around
the blocks they wish to group. The group actions are limited to Delete and moving the blocks.

4.1.2 Adding Components

The options, DataSource, Resource, and Workflow are very similar. Each of these options allows
the user to add a specific class of block to the diagram.

 40

1. DataSource
A block that provides the contents of an arbitrary entry on its output port. For
example, if you want to provide a specific genomic sequence as an input to another
block, you would add a DataSource, and select the entry containing the desired sequence
from the query dialog.

2. Resource
A block representing a core computational program.

3. Workflow
A block representing a previously defined workflow. It will appear as a single block
displaying only the inputs and outputs of the corresponding workflow definition (not
each of that workflow’s internal blocks). This allows the user to define increasingly
complex workflows in a hierarchical fashion. It also promotes the re-use of common
experiment steps.

Each of these options employs a similar interface. To add a DataSource, the user clicks on the
DataSource option in the Palette. The user then has to move the cursor to the Editor Area to
view the Search for: Datasource to Add dialogue box (See Figure 44). The user then must locate
the DataSource he/she wishes to add then click the OK button.

Figure 44. Search for: DataSource to Add dialogue box.

Additional details for adding a Resource and Workflow to a Workflow are described in Section
2.4.1 of this manual.

 41

4.1.3 Connections

The Connections option allows the user to connect the data blocks (DataSources, Resources or
Workflows), Input ports, and Output ports together, to define the data flow through the Workflow.
Every solid colored port in a Workflow definition must be connected to another port in order
for the Workflow definition to be complete. Shaded ports indicate optional ports. You may
make connections to/from these ports if you want to supply/use the data associated with the
port.

After selecting this option, the user moves the mouse to the source port for a connection and
clicks the left button. Next the user selects the destination port with another left button click.
If the connection is valid, a line between the source and destination appears. The system
remains in connection mode, waiting for the user to select another connection source, or to
select a different palette option.

The rules for valid connections are:

1. Connections must be made from source to destination; this means the source port
must be the initial selection.

2. Connections are only allowed from block outputs to block inputs (and workflow input
ports to block inputs, and block outputs to workflow port outputs)

3. Only one connection can be made to a block input (or workflow output port)
4. Multiple connections may be made from a block output (or workflow input port)
5. The source and destination port types must be compatible. For example, you cannot

connect a FASTA format to a port that requires a BLAST_Report. Port type
information is provided in a help dialog that appears whenever the mouse hovers over
a port.

4.1.4 Input and Output Ports

Input and output ports in a Worfklow definition define the external interface for this
component. Input port(s) signify data that must be supplied in order for the workflow to
execute, and output port(s) represent data that will be accessible after it has executed. The
ports must be connected to block inputs (outputs), using the connection option described in
the previous section, in order to complete the workflow definition.

Typically, output ports are defined for the final block outputs. But, they can also be used to
make data that is transferred between two blocks in the workflow visible externally. To do so,
simply define another output port, and connect the input source for the internal datapath to
this port. Then, the data will used as input for the block to which it is connected, and
preserved as an external output generated by the workflow.

The names used for input and output ports must be distinct in the workflow definition.
Default unique names are automatically generated, but it is highly recommended that the user
change the port names to more meaningful names once they are added to a Workflow. This is
done in the Properties view. The type of input and output ports is automatically derived from

 42

the type of the block port to which it is eventually connected. Examples of adding both
Inputs and Outputs are provided in Section 2.4.2 of this manual.

4.2 Non-palette Actions

This section describes the remaining Workflow Editor actions and how to invoke them.

4.2.1 Argument Value Assignment

Each Resource/Workflow has zero or more arguments (parameters) that control or modify its
execution. Once a Resource/Workflow has been added to a Workflow definition, the user has the
option to set these argument values. This action is performed in the Properties View that
typically appears as one of the tabbed views directly below the editor area.

The user must select the block in the Workflow whose values he/she wishes to adjust. The
arguments of that Resource and the current values to them will appear in the Properties View.

For each argument the user can choose to:

1. Allow the program to choose a default value for the argument.
To do this, the argument value should be left empty. For some arguments, the user
must provide a value, however, and the workflow definition will not be complete until
the user makes a value assignment.

2. Set the argument to a specific value.
To do this, simply enter or select the desired value. A validation function is performed
on argument values. If an invalid value is entered, it will not be accepted and a brief
error message will appear in the status line at very bottom of the CJ window. When an
argument value is set to a specific value, every experiment that is defined using that
Workflow will use this assigned value.

3. Promote the argument to become an argument for the Workflow being defined.
To promote an argument, the user checks the box located to the left of the argument
name. This action implicitly creates a new argument (with this argument’s name) for
the Workflow being defined. The value used for this argument for the selected block
is deferred to the user for the workflow being defined. Promoting an argument allows
the user to decide what the value of that argument should be for each experiment that
is defined using this Workflow. This allows the Workflow to be more flexible in
defining experiments. This option prevents the necessity of having several copies of
virtually the same Workflows that only vary in the values that are given to the
properties of the Resources in the Workflow.
If a value is entered in the value field of a promoted argument, this value will be used
as the default value for the promoted argument.

 43

4.2.2 Context Menu Actions

When you click the right mouse button inside the Workflow Editor, a context menu appears
with actions:

1. Undo – removes the effects of the most recent editor action. You may invoke this
action repeatedly to step back through multiple editor actions.

2. Redo – repeats the most recent undo action. If you have performed undo multiple
times, you may use redo to repeat each of these actions in order.

3. Delete – removes the currently selected object(s) from the editor.

4.2.3 Save Actions

The main File menu provides several actions to allow you to save your work.

1. Save – saves the current contents of the active editor in the CJ environment, and
allows you to continue editing the workflow.

2. Commit –saves the current contents of the active editor in the CJ environment AND
marks the associated entry as committed. Once committed, the workflow can be used to
define an experiment, or in the construction of more complex workflows. However, it
can no longer be modified.
Since the workflow cannot be modified after this action, the workflow editor first
performs a series of tests to verify that the definition is both complete and consistent.
For example, it ensures that no required block port has been left unconnected; and
that every argument value assignment is valid. If any problems are detected, a dialog
box appears explaining the problem(s), and the commit action is canceled.
After the commit action completes, the active edit session is implicitly closed, and a
browser is opened on the same object. A browser is an editor with limited capabilities;
it does not permit you to modify or save the object.

3. Save As – creates a new workflow entry with the name you choose that is initialized
with a copy of the contents of the active editor window. The active editor is implicitly
closed (without saving any changes), and a new editor window is opened on the newly
created workflow.

4. Close – closes the currently active editor window. If the object has been modified you
will be asked if you want to save the contents before closing.

4.2.4 Help

To assist the user in the CJ environment, there is hover help. The user places the cursor over
objects in the Workflow Editor, and a brief help message about the object appears on the
screen. Figure 45 shows an example of a hover-help message.

 44

Example of a
hover-help message

Figure 45. Example of a hover-help message.

5 Launching an Experiment

Once a Workflow has been committed, experiments can be defined and executed using that
Workflow. The Workflow of interest needs to be active in the Workflow Editor. In this section,
a Workflow (MultipleAlignExample) that uses three Resources, Simple Blastall, ExtractSeq and clustalw
MA, will be used to describe the process of launching an experiment. In this Workflow, the
Simple Blastall Resource has its parameters promoted. The promotion of these parameters means
that the user will have to decide the values for these parameters during the process of defining
an experiment based on this Workflow.

5.1 Starting the definition process

To start the definition process, the user needs to first go to the Experiment Menu and select the
Define Experiment From Workflow option (See Figure 46)

 45

Menu option that is selected
to define an experiment
from a Workflow

Figure 46. Experiment Menu option to define an experiment from an active Workflow.

When this menu option is selected, a dialog box will appear (Figure 47). The user is asked to
specify a name for the entry to contain this experiment definition; and to specify the Journal
and the Group Access for the experiment and the results it will generate.

Figure 47. Execution Wizard dialog box.

To define the experiment’s parameters, the user clicks the Next button. On the following
page, the user specifies the needed input(s) for the experiment and the values for the
promoted parameters. A message at the top of the dialog box will inform the user what
he/she is required to enter (See Figure 48).

 46

Promoted
properties

Figure 48. Execution Wizard dialog box.

5.2 Adding Input

To specify an input for the experiment, click the Browse… button associated with the input
port. A search dialog box will appear (See Figure 49).

Figure 49. Search dialog box that appears when looking for input.

Notice that the search dialog box automatically limits the Content Type of the search to the type
that is appropriate for the specified input port. In this example, FASTA formatted data is
required. Thus, the user can only select Entries of this Content Type to add as input for the
experiment. If the user can see an Entry he/she wants in the Navigator Shell, but not in the

 47

search dialog box, he/she may want to use the Show Entry Properties ring-button option in the
Navigator Shell to compare the desired Entry’s properties to what is required.

To help find the desired input, the user can alter the search criteria to restrict or expand the
search space in the CJ environment. Also, only committed Entries can be selected. For this
example, an amino acid FASTA entry called beta-preprotachykinin will be used (See Figure 50).

Figure 50. Completed dialog box for an experiment input.

5.3 Execution Controls

5.3.1 PBS Queue

The user needs to specify the PBS (Portable Batch queue System) Queue in which to execute
the experiment. All jobs executed using the cluster computing environment are controlled by
a queuing system, PBS, to facilitate sharing of the resources. Many different queues are
defined on the system that control priority of the jobs submitted to them and the range of
resources available to those jobs.

Before attempting to run experiments, the project supervisor and/or the system administrator
needs to be consulted about which queues can be used and the restrictions they impose on
jobs submitted. It is the user's responsibility to choose an appropriate queue (short, medium,
long or max) for the defined experiment. If inadequate resources are available in the selected
queue (for example, maximum execution duration), the experiment will not be able to
complete successfully. In this example, the medium_ecbc queue will be used.

 48

5.3.2 Debug

If the Debug option is selected, additional information will be saved during the experiment
execution. An Error Object will be generated when the experiment runs, even if the experiment
completes successfully. The additional information collected in the Error Object can help a user
understand why an experiment does not generate the expected results even though it
completes successfully. The Debug option allows the user to trace back through intermediate
results to help the user discover where the results began to differ from what was expected. In
this example, Debug will be selected. Additional details about the content of an Error Object are
provided in Section 6 of this manual.

5.4 Assigning Values to Promoted Parameters

Since the Simple Blastall Resource has three promoted parameters, the user needs to provide
values for these parameters. Since an amino acid sequence was selected for input, a BLAST
program that can accept that format should be selected. In this example, blastp will be
selected. The default database, nr, will be entered, and for the expectation value we will use
the default value in the dialog, .01. Figure 51 shows the completed dialog box.

Figure 51. Completed Execution Wizard dialog box.

5.5 Starting the Experiment

To start the experiment, the user clicks the Finish button. After the Finish button is clicked, the
CJ will create an instance of the experiment, MultipleAlignExample-Run.1. We will see a
graphical representation of the experiment in the Editor Area (See Figure 52).

 49

Figure 52. Experiment in the Editor Area.

5.6 Tracking Experiment Progress

It is useful to track the status of an experiment since bioinformatics applications are often
computationally intensive and have long execution time. Once an experiment has been started
the user can track the progress of the experiment using the Check Experiment Progress action or
the Queue Manager View.

5.6.1 Check Experiment Progress

The action Check Experiment Progress on the Experiment menu opens a simple dialog presenting
the current state of the active experiment definition in the Editor Area. This action simply
reports that the experiment is still running, has completed successfully, or completed with
errors. If the experiment completes successfully, the Entry(ies) associated with the
experiment’s output ports will contain the experiment results. If the experiment completes
with errors, the user will want to review the Error Object to determine the cause of the errors.
The Error Object is described more fully in Section 6 of this manual.

5.6.2 Queue Manager

The Queue Manager view, which is a tabbed view that typically appears directly below the Editor
Area, provides a more detailed view of an experiment’s progress. This view provides a
summary of the current status of all jobs that have been submitted to execute experiment(s) on

 50

your behalf, as well as all other active jobs on the cluster. Figure 53 provides a sample view
from the Queue Manager.

Refresh icon
Delete icon

Figure 53. Queue Manager View

Typically, several jobs are generated for the execution of a single experiment. At the top of
the Queue Manager view are the experiment(s) the user has submitted that are still running, or
have recently completed. At the next level of the hierarchy is the collection of jobs that are
currently active for this experiment. The names of these jobs are automatically generated, but
include the name of the resource they are executing. For each job, additional information such
as the job status and amount of execution time is provided.

In this view, the active queues (those with jobs currently running) on the cluster are also
presented below the user’s active experiments. This information can be helpful when the user
is choosing which queue to submit a new experiment.

The Queue Manager view is not automatically updated. The user must explicitly request this
view to update its presentation of the queue status by selecting the Refresh icon at the top,
right edge of the view. After an experiment completes, the Queue Manager provides a special
status line for this experiment:

Recently finished <experiment title>
This message appears only once. The next time that you refresh the Queue Manager view there
will be no mention of this completed experiment.

The Queue Manager view recalls the experiments that the user has started in previous CJ
session(s), so if the user has a long running experiment, he/she can continue to track its
progress with the Queue Manager view, if he/she exits and then restarts his/her CJ session.

The Queue Manager view provides no information about the status of a completed job, that is, if
it completed successfully or with errors. For this information the user needs to use the menu
action, Check Experiment Progress.

 51

5.7 Stopping Experiment Execution

The Queue Manager, described in the previous section, also allows the user to halt the execution
of an experiment, in case the user determines that there was a problem in the experiment
definition, or if the experiment is executing for much longer than anticipated.

To stop a running experiment, select the experiment in the Queue Manager, and then click on
the Delete menu icon in the upper right corner of the Queue Manager View.

5.8 Viewing Results

A result/output Entry is created as soon as the experiment begins, but the contents will be
empty until the experiment has completed. Once the experiment has completed, the results of
the experiment can be viewed by double-clicking the output block in the experiment or by
selecting the output Entry in the Navigator Shell.

5.9 Editing Experiment Definitions

Once an experiment has begun execution it cannot be modified. It remains as a permanent
record of the experiment. However, if you would like to run a similar experiment changing
one or more inputs and/or parameter values, you can use the Save As action on the File menu.

The DataSinks (output entries associated with the experiment output ports) are not copied.
You must define new entries for the outputs of this new experiment. To add a DataSink, the
user selects the DataSink Palette option. A dialog appears requesting the user to provide a name
for the new entry that will be created. In this example, the output will be called
MultipleAlignmentOutput (See Figure 54). The user then needs to click in the Editor Area to
place the sink into the experiment. Finally, the user needs to connect the DataSink block with
the appropriate output port.

Figure 54. Shows the DataSink dialog box

In addition the user can change the Entry used as an input to the experiment by first removing
the DataSource in the diagram to be replaced, and then selecting the DataSource Palette option to
create a new DataSource. This will present a search dialog from which the user selects the Entry
he/she wants to use as the input source. This search dialog places no constraint on the
content type, since the port to which you will attach the DataSource has not been identified.

 52

After placing the new block in the diagram, the user must connect it to the appropriate input
port. Note that if the Content Type of the Entry the user selected as the DataSource is not
compatible with the input port, the connection will be refused.

To change one or more system parameters, select the Workflow block in the diagram and use
the Properties View to check and/or change the experiment parameter values. Chapter 4, that
describes the Workflow Editor, provides details about the usage of the Property View.

The user can then run the copy of the experiment by selecting the Start Experiment option in
the Experiment menu. Figure 55 shows the copy of the experiment and that it is running
(Queue Manager).

Figure 55. CopyOfMultipleAlignExample-Run.1

6 Error Object

If an experiment fails to complete successfully an Error Object is generated that contains
additional details about the experimental process. An Error Object is always generated for
experiments that are executed with the Debug option set.

To view the Error Object associated with an experiment, select the View Experiment Error Object
action on the Experiment menu, when the experiment definition is active in the editor area.
The viewer for an Error Object uses a multi-object editor paradigm. At the bottom of the
window is the list of objects that can be presented. The viewing area contains the data

 53

associated with the selected tab. To view another object, the user simply selects the
appropriate tab. Figure 56 shows an example of the view of an Error Object.

Tabs representing Error Objects

Figure 56. Error Object and the tabs for the other objects

To better understand the meaning of the objects contained in an Error Object, a brief overview
of the process to execute an experiment defined in the CJ will be provided. An experiment
definition typically describes the execution of several core programs on the computer cluster in
a specific order. To execute an experiment, a distinct job is defined to control the execution
of each core program (Resource in a CJ Workflow definition). If the output(s) of the Resource are
not connected to a DataSink in the experiment definition, a temporary file will be allocated for
the output. The name for each of these files is automatically generated, beginning with tmp.
These temporary files are used to transfer data internally between connected Resources.

A schedule is created for the set of jobs defined to execute the experiment so that a job begins
only after all jobs that are responsible for generating its input source(s) have completed –
without failing. If one or more of a job’s dependents fails, then this job is cancelled.

For each job that does execute, three files appear in the Error Object:

1. <name>.script that contains the command line used to start this program.

 54

2. <name>.out that contains information output to stdout by this program. The
content of this file is completely dependent on the program that is run. It may contain
information about invalid inputs and/or warning messages.

3. <name>.err that contains information output to stderr by this program. The
content of this file is completely dependent on the program that is run. It typically
contains error information that is likely to explain why a program failed to run
correctly.

In addition, a portion of each of the internal files that contain data transferred between
internal blocks in the diagram will appear in the Error Object. The contents of these files are
presented only with a simple text editor. So if the output contains data in binary format, the
Error Object will not provide capabilities to view it properly. Observing the information that
flows along internal connections will often help explain why an experiment failed, or at least
did not generate the expected results. The content of DataSinks do not appear in the Error
Object since these entries can be viewed directly in the CJ environment.

7 Incorporating External Viewers

For some Content Types (data formats) sophisticated viewing programs already exist that may
not be easy to directly incorporate into the CJ environment. The CJ environment allows users
to integrate these existing tools into his/her usage of the CJ through the definition of a Local
Service. This mechanism allows the user to associate a program running on his/her client
machine for viewing a specific Content Type.

When defining a new Local Service, the user identifies:

1. The exact location of the program on his/her machine;
2. The command line argument(s) that must precede the input filename when this

program is invoked; and
3. The content type for which this program should be used as the viewer.

Each user must define the Local Services installed on his/her machine that he/she intends to use
from the CJ. This is not a system-wide setting because different users will choose to include
different programs; and these programs can be installed at arbitrary locations. It is the user’s
responsibility to properly install these external programs on his/her machine.

This action is invoked from the File Menu, New option, and then Local Service (See Figure 57).

 55

Menu option used to incorporate
an external editor

Figure 57. Menu option to add an external viewer to the CJ environment.

A dialog box appears that allows the user to incorporate an external viewer to the CJ
environment (See Figure 58).

Figure 58. Wizard to define a Local Service.

The following steps demonstrate how to define the Visual Molecular Dynamics (VMD)
program (http://www.ks.uiuc.edu/Research/vmd/) as the default viewer for pdb files.

1. Choose a title for the service. In this example, the title will be VMD-pdb.
2. Provide the command line sequence to run the program. Normally, this is simply the

full pathname to the location of the program on your computer. Since VMD was
downloaded to the default location on this local machine, the command line is:
For Windows: C:\Program Files\University of Illinois\VMD\vmd.exe
For Unix: /usr/local/bin/vmd.exe

 56

3. Supply the command line argument to precede the filename. For the VMD program
to accept an input file in pdb format this is:
-pdb

4. Select the Content Type to associate with this program.
In the CJ, the Content Type associate with pdb files is named pdb. To find this type,
click on the Browse… button, and select pdb then click the OK button (See Figure 59).

Figure 59. List of Content Types that can be selected.

The completed dialog box can be seen in Figure 60.

Figure 60. Completed dialog box to add the external viewer.

Now, whenever this user selects an Entry with content type, pdb, the Entry contents will be
displayed with VMD.

 57

The user must ensure that the external program is properly installed on his/her computer, and
that the command line and input flag are specified correctly. It is a good idea to test the usage
of an external viewer directly from the command line on the user’s machine before attempting
to define a new Local Service.

After successfully defining a local service, whenever an Entry with the corresponding content
type is opened, the external viewer will be used to display the contents. Figure 61 shows a
screen view after selecting the Entry, 1AK1. Because its content type is pdb, VMD was used
to present its contents.

Figure 61. Screen view of Entry 1AK1.

