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Abstract—Understanding and modelling the Internet has been
a major research challenge in part due to the complexity of the
interaction among its protocols and in part due to multilevel,
multidomain topological structure. It is therefore crucial to
properly analyse each structural level of the Internet to gain
a better understanding, as well as to improve its resilience
properties. In this paper, first we present the physical and logical
topologies of two ISPs and compare these topologies with the US
interstate highway topology by using graph metrics and then
using the normalised Laplacian spectrum. Our results indicate
that physical network topologies are closely correlated with the
motorway transportation topology. Finally, we study the spectral
properties of various communication networks and observe that
the spectral radius of the normalised Laplacian matrix is a good
indicator of graph connectivity when comparing different size
and order graphs.
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I. INTRODUCTION AND MOTIVATION

The Internet has become a critical infrastructure and its
modelling has been a major research effort with some con-
troversial findings [1]–[3]. The primary focus has been on the
logical aspects of the topology, since tools were developed to
collect, measure, and analyse IP-layer properties of the Internet
(e.g. Rocketfuel [4]). On the other hand, physical topologies
provide the necessary connectivity to higher layers; thus defin-
ing physical connectivity is a major research challenge [5],
[6]. Previously, we observed that the link connectivity of
the physical topologies appear visually correlated with other
critical infrastructures such as motorways and railways [7].

In this paper, we intend to provide insight into the evo-
lution of the communication networks by generating the
topology of the US interstate highway system and analysing
its graph properties against the physical fibre topology and
PoP (point of presence) level topology of two ISPs (Internet
service providers). Previous studies analysed US interstate
highways [8], Dutch roads [9], road networks of California,
Pennsylvania, and Texas [10], US and European road net-
works [11], European railways [12], and Indian railways [13].
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In this paper, first we present our ongoing efforts towards mak-
ing the physical network and transportation network topologies
available. Next, we analyse network characteristics of these
different critical infrastructures both in terms of graph metrics
and graph spectrum.

The second major contribution of this paper is to analyse
the spectrum of the normalised Laplacian matrix for resilience
properties. We show that traditional graph metrics are not
sufficient for a comparative analysis of graphs with different
numbers of nodes and links. Furthermore, we observe that the
spectral radius of the normalised Laplacian matrix may be the
ideal measurement for comparing connectivity of graphs with
different order and size.

The rest of the paper is organised as follows: We present
brief background on graph spectra in Section II. The dataset
for the communication and transportation topologies we use
in this study is presented in Section III. The evaluation of
graphs using metrics and spectrum is presented in Section IV.
We correlate graph diversity with the spectral radius of the nor-
malised Laplacian matrix in Section V. Finally, we summarise
our findings as well as propose future work in Section VI.

II. BACKGROUND AND RELATED WORK

Let G = (V,E) be an unweighted, undirected graph with
n vertices and l edges. Let V = {v1, v2, . . . , vn} denote the
vertex set and E = {e1, e2, . . . , el} denote the edge set. The
connections between its nodes can be represented by several
methods including an adjacency matrix, incidence matrix,
Laplacian matrix, and normalised Laplacian matrix [14], [15].
A(G) is the symmetric adjacency matrix with no self-loops
where aii = 0, aij = aji = 1 if there is a link between
{vi,vj}, and aij = aji = 0 if there is no link between {vi,vj}.
The Laplacian matrix of G is: L(G) = D(G)− A(G) where
D(G) is the diagonal matrix of node degrees, dii = deg(vi).
Given degree of a node is di = d(vi), the normalised Laplacian
matrix L(G) can be represented:

L(G)(i, j) =






1, if i = j and di �= 0

− 1�
didj

, if vi and vj are connected

0, otherwise
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Let M be a symmetric matrix and I be the identity matrix
of order n. Then, eigenvalues (λ) and the eigenvector (x) of M
satisfy Mx = λx. In other words, eigenvalues are the roots of
the characteristic polynomial, det(M−λI) = 0 for x �= 0. The
set of eigenvalues {λ1, λ2, . . . , λn} together with their multi-
plicities (number of occurrences of an eigenvalue λi) define
the spectrum of M . Spectral graph theory has been extensively
covered in several monographs [14]–[18]. The spectrum of the
AS-level topology of the Internet has been analysed based on
the k largest values of the adjacency matrix [19]. The IP-level
topology of the Internet has also been investigated and its
Laplacian spectrum compared against synthetically generated
topologies [20]. The normalised Laplacian spectrum of AS-
level topologies has been shown to differ significantly from
that of synthetically generated topologies [21]. Recently, a
weighted spectral distribution metric has been proposed and
shown that synthetically generated graphs can be fine-tuned
using spectral properties [22]. While previous studies utilised
graph spectra to analyse logical level topologies, in this study
we focus on physical networks and how they relate to each
other structurally.

III. TOPOLOGICAL DATASET

We study real networks (i.e. transportation and communi-
cation) that are geographically located within the continental
United States. Therefore, we only include the 48 contiguous
US states, the District of Columbia, and exclude Hawaii,
Alaska, and other territories. Furthermore, we have developed
the KU-TopView (KU Topology Visualiser) [7] using the
Google Map API and JavaScript to visually present these topo-
logical maps. Unlike other visualisation tools, KU-TopView
makes raw data conveniently available in the universal form
of an adjacency matrix along with the node coordinates. We
have made these topologies publicly available [23].

A. Transportation Network

We have generated the interstate highway topology to
represent the transportation network. Our starting point is the
American Association of State Highway and Transportation
Officials (AASHTO) data, which lists control cities and their
sequential listing along each interstate highway. A control
city is a major population center or destination on or near
the interstate highway system determined by each state [24].
However, while building the transportation topology, we re-
alised that the existing list of control cities are not sufficient
to represent the graph accurately. For example, there is no
control city at some interchanges between interstate highways.
Therefore, we add 6 additional cities in those cases after
verifying the crossing on Google Maps. There are also a few
newer highways that are not listed in the 2001 AASHTO
document that we add to reflect current connectivity (e.g. I-
335 Kansas Turnpike, I-86 East, I-97, I-68, I-495 in NY). This
US highway graph with 400 nodes, 540 links, and an average
degree of 2.7 is shown in Figure 1. We note that in a previous
study of US interstate highway system, the authors used GIS
(geographic information system) databases from the year 2000

(unfortunately there is no reference to the source of data nor
is the topology publicly available), and the resulting interstate
highway network consisted of 935 nodes, 1337 links with an
average degree of 2.86 [8].

Fig. 1. US interstate highways

B. Communication Networks

The Internet is a complex and large-scale network for
which collective analysis is non-trivial. Therefore, we restrict
our study to include PoP-level and physical fibre topologies
of individual service providers. We use Rocketfuel-inferred
AT&T and Sprint PoP-level topologies [4] to study logical
level topologies as shown in Figure 2. We note that interna-
tional links, as well as links crossing over Pacific and At-
lantic Oceans, are removed intentionally to compare the PoP-
level topologies against the interstate highway topology. The
original PoP-level topological data from Rocketfuel is used to
compare graph diversity and spectral radius in Section V.

  
  
  

Fig. 2. Logical topologies overlaid on highways

We use a US long-haul fibre-optic routes map data to gener-
ate physical topologies [25]. In this map, US fibre-optic routes
cross cities throughout the US and each ISP has a different
coloured link to differentiate between them. We project the
cities to be physical node locations and connect them based on
the map, which is sufficiently accurate for national scale. We
use this data to generate adjacency matrices for each individual
ISP as shown in Figure 3. Initial visual inspection suggests that
the physical fibre topologies are similar to interstate highway
topology. The relation of the fibre topology and other physical



  
  
  

Fig. 3. Physical topologies overlaid on highways

infrastructures was stated before [7], [26]; however, to best of
our knowledge, we are not aware any work that correlates
these different infrastructures rigorously.

IV. TOPOLOGY ANALYSIS

Although topology viewing is a powerful tool, it does not
suffice for rigorous analysis of topologies [27]. We therefore
calculate the graph metrics of regular networks (shown in
Table I) and critical infrastructures as shown in Table II using
the Python NetworkX library [28].

A. Metrics Analysis

Some of the well-known metrics provide insight on a variety
of graph properties, including distance, degree of connectivity,
and centrality. Network diameter, radius, and average hop
count provide distance measures [5]. Betweenness is the
number of shortest paths through a node or link and provides
a centrality or importantness measure [29]. Clustering coeffi-
cient is a centrality measure of how well a node’s neighbours
are connected [5]. Closeness centrality is the inverse of the
sum of shortest paths from a node to every other node [30],
[31]. Assortativity provides a measure of degree variance in
a network [32]. Algebraic connectivity, a(G), is the second
smallest eigenvalue of the Laplacian matrix [33]. For the
graphs of the same order, algebraic connectivity provides
a very good measure of how well the graph is connected
and it indicates robustness of networks against node and link
failures [34]–[36].

We start our metrics-based analysis on six baseline topolo-
gies: star, linear, tree, ring, grid, and full mesh. We investigate
the effect of an increase in the size and order from n = 10 to
n = 100 for the baseline topologies as shown in Table I. Since
some metrics yield the same values for graphs of the same
order (e.g. average degree for star, linear, tree), and others
yield the same values for graphs of differing sizes and orders
(e.g. same a(G) for 10 node linear and 100 node grid), relying
on a single metric for graph analysis is clearly not sufficient.

We also investigate graph properties of the two ISP net-
works, which include PoP-level and fibre-link level topologies,
as well as the US interstate highway graph as shown in
Table II. The metrics for the logical topologies of Sprint
and AT&T differ from the physical topologies of the Sprint

and AT&T. In general, AT&T topologies have more nodes
and links compared to Sprint topologies. Physical topologies
have more nodes and links compared to logical topologies
for each backbone provider with very different characteristics.
The maximum degree of each provider’s physical topology is
less than that of its corresponding logical topology. This is
due to the ability of logical topologies to arbitrarily overlay
virtual links and a number of degree two intermediate nodes
needed for accurate geographic representation. Average degree
values for the logical topologies are greater than those of
the fibre layer topologies. Both physical topologies have a
network diameter of 37, which is an order of magnitude greater
than the network diameter of the logical topologies. Similarly,
the network radii of the physical topologies are an order of
magnitude greater than the logical topologies. The average
hop counts of the physical topologies are greater than those
of the logical topologies. Betweenness values also differ for
physical and logical topologies, showing a difference of an
order of magnitude higher for physical topologies.

From a distance metrics perspective, clearly physical topolo-
gies have higher values. This is expected since physical
topologies have more nodes with low degree. We observe that
degree based metric values also differ between physical and
logical topologies. This can be attributed to ease of connecting
nodes on a logical topology, whereas physical connections
require fibre to be installed physically between nodes. From
the centrality metrics perspective, we can see that the physical
topologies are not as clustered and the degree distributions are
more homogeneous. We can also see that US highway graph
metrics are closer to those of the physical topologies. This
is not surprising: since both the US highway system and the
physical layer of the Internet are physical infrastructures rather
than logical overlays, they frequently share the same right-
of-way. Collective analysis of graph metrics provides a good
indication of resilience of different topologies; however, it is
difficult to infer sensible conclusions about the structure of a
network or how similar two different networks are. Therefore,
we redirect our attention to the spectra of these graphs.

B. Spectrum Analysis

The normalised Laplacian spectrum provides insight into
the structure of networks that are different in size and order.
The eigenvalues of the normalised Laplacian reside in the
[0, 2] interval and take values {0 = λ1 ≤ λ2 ≤ . . . ≤ λn}.
The algebraic multiplicity of λ = 0 indicates the number
of connected components. Furthermore, similar matrices may
have similar eigenvalues and multiplicity. The spectrum of
L(G) is symmetric about 1. A large algebraic multiplicity
for the eigenvalue λ = 1 may indicate duplications in a
network [37]. In other words, two separate nodes {u, v} might
have all or many of their neighbours being same. The presence
of many small eigenvalue multiplicities may indicate that there
are many components within a graph and these components
are loosely connected to each other [37]. An eigenvalue of 2
indicates the graph is bipartite; eigenvalues close to 2 indicates
the graph is close to being a bipartite graph [37]. A bipartite



TABLE I
TOPOLOGICAL CHARACTERISTICS OF BASELINE NETWORKS

Network Topology Star Linear Tree Ring Grid Mesh Star Linear Tree Ring Grid Mesh
Number of nodes 10 10 10 10 10 10 100 100 100 100 100 100
Number of links 9 9 9 10 13 45 99 99 99 100 180 4950
Maximum degree 9 2 3 2 3 9 99 2 3 2 4 99
Average degree 1.8 1.8 1.8 2 2.6 9 1.98 1.98 1.98 2 3.6 99
Degree assortativity -1 -0.13 -0.53 1 0.28 1 -1 -0.01 -0.34 1 0.57 1
Node closeness 0.58 0.29 0.37 0.36 0.44 1 0.51 0.03 0.13 0.04 0.15 1
Clustering coefficient 0 0 0 0 0 1 0 0 0 0 0 1
Algebraic connectivity 1 0.1 0.18 0.38 0.38 10 1 0.001 0.01 0.004 0.1 100
Network diameter 2 9 5 5 5 1 2 99 12 50 18 1
Network radius 1 5 3 5 3 1 1 50 6 50 10 1
Average hop count 1.8 3.67 2.82 2.78 2.3 1 1.98 33.67 7.8 25.3 6.67 1
Node betweenness (max) 36 20 26 8 11 0 4851 2450 3068 1201 616 0
Link betweenness (max) 9 25 24 13 12 1 99 2500 2496 1250 341 1

TABLE II
TOPOLOGICAL CHARACTERISTICS OF COMMUNICATION AND TRANSPORTATION NETWORKS

Network Topology Sprint Physical Sprint Logical AT&T Physical AT&T Logical US Highways
Number of nodes 263 28 361 107 400
Number of links 311 76 466 140 540
Maximum degree 6 14 7 23 7
Average degree 2.37 5.43 2.58 2.62 2.7
Degree assortativity -0.17 -0.23 -0.16 -0.4 0.11
Node closeness 0.07 0.48 0.08 0.3 0.08
Clustering coefficient 0.03 0.41 0.05 0.09 0.05
Algebraic connectivity 0.0053 0.6844 0.0061 0.1324 0.0059
Network diameter 37 4 37 6 40
Network radius 19 2 19 3 21
Average hop count 14.78 2.19 13.57 3.38 13.34
Node betweenness (max) 11159 100 15970 2168 22798
Link betweenness (max) 9501 27 14270 661 18585

graph is a graph in which its vertex set can be divided into
two groups in such a way that there will be no edges between
the vertices in each group.

The PMFs (probability mass functions) of the normalised
Laplacian eigenvalue multiplicities for baseline topologies
(star, linear, ring, tree, grid, full mesh) of order n = 100 is
shown in Figure 4. Since most of the eigenvalues have very
small multiplicities, the distribution of multiplicities has a floor
that is too noisy to be able to gather useful information. There-
fore, we use the CDFs (cumulative distribution functions) of
the eigenvalue multiplicities for these baseline topologies as
shown in Figure 5. The star topology has its eigenvalues fixed
{0 = λ1 ≤ 1 = λ2 = . . . = λn−1 ≤ λn = 2}. The spectrum
of a full mesh looks similar to a star, except that it does
not have an eigenvalue of 2 and the eigenvalues are fixed at
1.0101 (we comment on that later). An interesting observation
is that the spectrum of these two baseline topologies look
very similar. Indeed, at a micro level we can think of each
individual node in a mesh as a star. Furthermore, the algebraic
connectivity of a star is 1 [33]. However, since node centrality
measures are largest for a star topology, the central node in
a star can be the target of an attack or the single point of
failure from a network engineering perspective. The spectrum
of linear and ring topologies look almost identical, since a
ring has an additional link compared to a linear topology,
and both linear and ring topologies have the lowest algebraic

connectivity values. Multiplicities of tree and grid topologies
lie somewhere between the two extremes of mesh and linear.
We also observe that since a Manhattan grid is a combination
of linear topologies, its spectrum looks closer to a linear
topology.

We show CDFs of eigenvalue multiplicities of five different
complete graphs in Figure 6. The eigenvalues of a n order
complete graph are: {0 = λ1 ≤ n

n−1 = λ2 = . . . = λn}.
The multiplicity of the eigenvalue equal to n/(n − 1) for
complete graphs is n− 1. Moreover, as the order of the graph
approaches infinity, the eigenvalues will converge to a value of
1 since limn→∞

n
n−1 = 1. However, eigenvalues λ2 through

λn are never exactly equal to 1 in a finite full mesh topology.
Furthermore, the algebraic connectivity is equal to the order
of a complete graph a(G) = n.

The PMFs of eigenvalues of real networks are shown
in Figure 7; however, as with the baseline graph spectrum
comparison, its floor is noisy. Therefore, we plot the CDFs of
eigenvalues of real networks as shown in Figure 8. Clearly,
the spectra of the logical and physical topologies differ.
Furthermore, the spectra of the physical topologies resemble
the spectra of the US interstate highway graph. This confirms
our supposition that the properties of networks are similar
since fibre is laid along right-of-ways, such as highways. The
algebraic multiplicity for the eigenvalue λ = 1 is largest for the
AT&T logical topology, indicating that this topology contains
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the largest number of node duplications. In other words, this
topology has the most star-like components, as is evident
by visually inspecting it on KU-TopView [23]. The largest
eigenvalues indicate to what degree a graph is bipartite [37].
The largest eigenvalues of the physical topologies and the
largest eigenvalues of the interstate motorways graph are the
eigenvalues closest to 2. Hence, the physical topologies and
the motorways topology are the most nearly bipartite graphs.
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V. SPECTRAL RADIUS AND CONNECTIVITY

Previously, we presented how physical communication
topologies match the structure of the motorways using nor-
malised Laplacian spectra. In this section, we present our ob-
servations on evaluation of a graph by its normalised Laplacian
spectrum. We investigate 13 communication networks with a
variety of structural properties that we studied in our path
diversity metric study [30], [31]. The CDFs of eigenvalue mul-
tiplicities of communication networks are shown in Figure 9.
The eigenvalues of the 13 topologies are symmetric about 1,
with Telstra having the largest multiplicity corresponding to
the eigenvalue λ = 1. AboveNet has the smallest of the 13
largest eigenvalues, and the AT&T physical topology has the
largest of the 13 largest eigenvalues.

cTGD (compensated total path diversity) is a heuristic
metric that predicts survivability of a topology and indicates
the ability to construct diverse paths through a network that
do not share fate in node or link [30], [31]. The 13 topologies
we studied with their cTGD rankings are shown in Table III.
The a(G) (algebraic connectivity) of these topologies and their
rankings is shown in columns 3 and 4. Algebraic connectivity
is the second smallest eigenvalue of the Laplacian matrix
and is well-suited for measuring graph connectivity and for



TABLE III
GRAPH RANKING COMPARISON FOR PATH DIVERSITY AND SPECTRAL PROPERTIES

Network cTGD cTGD a(G) a(G) λ = 1 Multiplicity
ρ(L)

ρ(L)
ρ(L)

ρ(L)
ρ(A)

ρ(A)
Rank Rank Multiplicity Rank Rank Rank Rank

Level 3 0.4494 1 0.9518 3 0.0755 9 1.5033 2 43.0326 13 24.4635 13
AboveNet 0.4386 2 0.9645 2 0.0455 10 1.4978 1 18.1283 8 9.1761 10

Exodus 0.3617 3 1.0083 1 0.0455 11 1.7408 4 14.2244 6 5.9927 6
EBONE 0.3113 4 0.6477 4 0.1429 6 1.7335 3 12.6298 5 6.2532 7
Tiscali 0.2641 5 0.5255 5 0.2353 3 1.7470 5 23.3563 10 9.5895 11
Sprint 0.2407 6 0.3817 6 0.1136 7 1.7853 6 15.9659 7 8.7908 9
Verio 0.2009 7 0.2448 8 0.1967 4 1.8463 7 31.4149 12 12.4096 12
VSNL 0.1783 8 0.3402 7 0.1429 5 1.9053 9 4.6597 1 2.3799 1

GÉANT2 Phys. 0.1668 9 0.1515 9 0.0882 8 1.8518 8 10.3580 4 4.0859 4
AT&T 0.1446 10 0.1324 10 0.6296 2 1.9127 10 24.2950 11 6.9552 8
Telstra 0.0941 11 0.0454 11 0.7931 1 1.9797 11 19.1441 9 4.6868 5

AT&T Phys. 0.0348 12 0.0061 12 0.0388 12 1.9892 13 8.3783 3 3.7058 3
Sprint Phys. 0.0307 13 0.0053 13 0.0380 13 1.9839 12 7.1893 2 2.9316 2

C
D

F

normalised eigenvalues

Level 3
AboveNet
Exodus
EBONE

Tiscali
Sprint
Verio
VSNL

GEANT2
AT&T

Telstra
AT&T-phys

Sprint-phys

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0

Fig. 9. CDF of eigenvalues of communication networks

comparing the connectivities of graphs with the same vertex

set [33]. Since we are examining graphs of different orders,
a(G) cannot be used to effectively compare these topologies;
however, the overall rankings of the a(G) closely match the
cTGD rankings.

Next, we consider the λ = 1 multiplicities and rank them as
shown in columns 5 and 6 in Table III. Multiplicities of λ = 1
indicate node duplications [37]. For example, a star graph has
n− 2 multiplicities at eigenvalue 1, in which n− 1 pendants
are connected to central node and each pendant has the same
neighbour. In regards to the topologies, Telstra and AT&T have
the highest λ = 1 multiplicities at 79% and 63% respectively.
Indeed, when we visually check these two topologies in KU-
TopView [23], they have individual star components connected
to each other. AT&T and Sprint physical topologies are the
lowest on ranking, since they follow a grid-like infrastructure.

Finally, we consider the spectral radius of these 13 topolo-
gies. The spectral radius ρ is the absolute value of the
maximum eigenvalue, ρ = |λmax|. We calculate the spectral
radius of the normalised Laplacian matrix ρ(L), Laplacian
matrix ρ(L), and adjacency matrix ρ(A). We rank the spectral
radius in increasing order next to the eigenvalues as shown in
the last six columns of Table III. The ranking of the spectral

radius of the normalised Laplacian closely matches the cTGD
ranking, but some adjacent ranks are swapped compared to
the cTGD and a(G) rankings. In a normalised Laplacian
spectrum, an eigenvalue of 2 indicates the graph is bipartite

and closer the eigenvalues to 2 indicates the graph is closer
being a bipartite graph [37]. Among the 13 topologies we
study, AboveNet with 22 nodes and 80 links has the lowest
spectral radius; Level 3 has second lowest spectral radius with
53 nodes and 456 links. The physical topologies of Sprint
and AT&T rank last among 13 topologies with normalised
Laplacian spectral radii very close to 2. Ranking of the spectral
radius of adjacency and the Laplacian matrices are somewhat
close to each other. For example, while Level 3 has the highest
spectral radius for its adjacency and the Laplacian matrices,
VSNL has the lowest spectral radius for adjacency and the
Laplacian representations. On the other hand, the spectral
radius of the adjacency and the Laplacian matrices are not
close to cTGD or a(G) and the rankings do not seem to follow
any pattern.

We also calculate the spectral gap, which is the difference
between the largest and the second largest eigenvalues for
adjacency, Laplacian, and normalised Laplacian matrices. We
do not observe any obvious pattern among the calculated
spectral gap values.

VI. CONCLUSIONS AND FUTURE WORK

Understanding the evolution of networks is crucial for rig-
orous analysis and modelling of the Internet. We presented the
US interstate highway topology and compared its graph metric
characteristics with those of physical and logical communica-
tion network topologies. Our results indicate the motorway
graph is highly correlated with the physical fibre network.
Despite of many statistical studies on modelling the Internet,
we can show analytically that Internet evolution relies heav-
ily on other critical infrastructures. In addition to statistical
methods, dependency between critical infrastructures should
be considered when modelling the Internet. By comparing
the normalised Laplacian spectra and visual representations
of these topologies, we have shown that fibre topologies we
obtained are representative of the two commercial ISPs.



Secondly, we studied 13 communication networks along
with the characteristics of their normalised Laplacian spectra.
Our initial observation was that the spectral radius of the
normalised Laplacian matrix is a good connectivity indicator
of graphs with different size and order. We will later study
how graph bipartiteness relates to the connectivity of a graph.
Our future work will include investigating spectral properties
of synthetically generated graphs. Future work will consist
of generating railways topologies and analysing multilevel
properties of these critical infrastructures.
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2009.


