Demo: Application-Transparent Deployment
of DTN via SmartNet

Lance A. Alt

Justin P. Rohrer

Geoffrey G. Xie

Department of Computer Science, Naval Postgraduate School
{laalt, jprohrer, xie}@nps.edu

ABSTRACT

In this paper, we present the SmartNet architecture, an open
and extensible software framework for experimenting with
and deploying application-transparent network adaptation
solutions. The framework fashions a plugin-based system
architecture where each plugin implements a small set of
application or transport protocol specific network adapta-
tion requirements and can be chained with other plugins
to form a packet processing pipeline. Multiple concurrent
packet pipelines are configurable to enable selected traffic
flows to dynamically switch between native IP, split-TCP,
and DTN, based on observed network conditions. The end
user is able to configure not only which flows should use
split-TCP or DTN, but also the conditions under which each
option should be used.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—store-and-forward networks, net-
work topology; C.2.2 [Computer-Communication Net-
works]: Network Protocols—bundling protocol, split-TCP;
C.2.6 [Computer-Communication Networks|: Internet-
working—routers

Keywords

Disruption-tolerant networks; transparent gateways; mid-
dleboxes; split-TCP

1. INTRODUCTION

The predominant approach to integrating non-IP and IP
networks follows a vertical overlay model. In the case of
Disruption Tolerant Networking (DTN), it is either IP-over-
DTN or DTN-over-IP. This layered approach is simple to
design and implement, by requiring no data translation or
tracking of application state inside the network. However, it
not only introduces extra encapsulation overhead, but more
importantly, imposes least-common denominator semantics

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CHANTS’14, 07-11 September, 2014, Maui, Hawaii USA

Copyright 2014 ACM 978-1-4503-3071-8/14/09 ...$15.00.
http://dx.doi.org/10.1145/2645672.2645688

93

when moving data across network boundaries, and as such,
may severely degrade the performance of many applications
originally designed to work over end-to-end IP connectivity.

Recently, we proposed an alternative approach to integrat-
ing IP and DTN that can increase application performance
over DTN while requiring no code changes to either applica-
tions or the host protocol stack. Central to this “application-
transparent” approach [5] is the introduction of a proxy gate-
way that (i) splices the IP and DTN functionalities into a
single logical network layer, and (ii) supports application-
specific adaptation and notification. The system proposed
normally routed traffic over native IP and switched only to
DTN for specific traffic classes when link disruptions were
detected. It also included mitigation for application-level
timeouts, e.g. inserting keep-alive messages on behalf of a
remote SIP chat client [5] to boost application performance
and notify the end user of delays.

In this work, we present the SmartNet architecture, an
open and extensible software framework for experimenting
with and deploying application-transparent network adapta-
tion solutions such as our previously proposed DTN proxy
gateway. The framework fashions a plugin-based system ar-
chitecture where each plugin implements a small set of ap-
plication or transport protocol specific network adaptation
requirements and can be chained with other plugins to form
a packet processing pipeline. In our initial implementation,
multiple concurrent packet pipelines can be configured to en-
able designated packet flows to dynamically switch between
native IP, split-TCP, and DTN, based on observed network
conditions. The end user is able to configure not only which
flows should use split-TCP or DTN, but also the conditions
under which each option should be used. An advanced user
is provided with an API to enable the creation of new plugins
that can form new elements of the packet pipelines through
standard input and output interfaces, complete with support
for new applications, and new configuration options.

2. SMARTNET DESIGN

The challenges facing the deployment of DTN are not
unique. While there are abundant scientifically vetted pro-
posals for network enhancements, many computers and mo-
bile devices still run the basic stack developed more than a
decade ago. Commercial products such as WAN optimiz-
ers and other kinds of middleboxes are mostly proprietary,
too bulky and too costly to be widely adopted. In designing
SmartNet, we seek to provide a general software solution for
deploying network optimization.

In this section, we first state our primary objective and a
set of desirable system properties dictated by it. We then de-
scribe a “divide and conquer” methodology to further modu-
larize the development and deployment of network optimiza-
tion software. Finally, we detail several important elements
of our current SmartNet design, including the software ar-
chitecture, the major functional building blocks, and the key
steps taken to address potential performance bottlenecks.

2.1 Primary Objective and System Properties

We envision the users of the SmartNet gateway software
to include both the developers of network optimization solu-
tions and the network operators who deploy such solutions.
For both groups of users, which constitute the core of the
network optimization ecosystem, a top concern is how eas-
ily an optimization solution can be integrated into an exist-
ing network. Therefore, our primary objective is to support
rapid deployment of all sorts of network optimizations in one
network. To this end, we view the following characteristics
as essential for SmartNet.

e Application-transparent. SmartNet should boost
the network performance of applications without re-
quiring code changes to either the applications or the
host OS stack. Furthermore, it should provide means
for explicit notifications of network optimist and pre-
vent protocol or application timeouts.

e Open and extensible. SmartNet should provide
standard public interfaces for (i) adding new network
optimization modules (either source or compiled code),
and (ii) enabling a specific subset of optimization mod-
ules and configuring their trigger conditions.

e Per-flow optimization. SmartNet should support
concurrent executions of optimization logic for differ-
ent packet flows (application-specific, destination spe-
cific or other granularities).

Clearly, there will be a performance trade-off for provid-
ing the level of flexibility and abstraction described above.
It is important for SmartNet to control this cost to a level
that does not significantly impact the performance gains of
the deployed network optimization solutions. After all, per-
formance is the reason why operators deploy network opti-
mizations in the first place.

2.2 Plugin-based System Architecture

Our design is focused around a dynamic plugin based ar-
chitecture. A central core manages all plugins and certain
common functionality such as the central storage facility
(CSF). Plugins are distinguished broadly into two classes:
“optimization” plugins process packets and perform the ac-
tual network optimization while “meter” plugins monitor and
provide updates of network state information required for
determining which kind of optimization, if at all, should be
performed for each user flow.

We have created and evaluated several plugins specific to
providing integrated IP and DTN transport to SIP/UDP
and HTTP traffic. Since we have presented the integration
of DTN and SIP/UDP in a prior paper [5], we will focus
on how SmartNet supports HTTP flows in this paper. More
specifically, we have designed a SplitTCP plugin to minimize

94

the negative performance impact of a network layer disrup-
tion to TCP connections, including those carrying HTTP
traffic. The same plugin needs to run on both end points
of a Web session. Together they create three connections
for delivering the packets: a TCP connection between the
client and the client-side SmartNet, a TCP connection be-
tween the server and the server-side SmartNet, and a TCP or
DTN connection between the two SmartNets. This way, the
plugins can dynamically switch between the normal TCP/IP
transport mode and DTN depending on the network condi-
tion, while preventing the TCP connection on either the
client or server side from retransmitting unnecessarily or
timing out when a network disruption occurs.

2.3 Major Functional Building Blocks

Our SmartNet implementation consists of several distinct
and modular components: Packet pipelines, asynchronous
messaging system, and composable triggers.

2.3.1 Packet Pipeline

The key building block in the SmartNet is the notion of a
packet pipeline which provide network optimization for one
user flow at different granularities (e.g., per destination ad-
dress or subnet and per application). The pipeline consists
of one or more plugins connected to create a directed acyclic
graph. Multiple parallel pipelines can coexist and run at the
same time. More specifically, packets of different user flows
are de-multiplexed onto different paths within the gateway
based on configurable criteria such as their application type
and destination addresses.

Individual plugins are connected via packet queues. Each
plugin contains one and only one input queue. Utilizing
queues as the input for each plugin allows the SmartNet to
be resilient to plugins that process packets in non-constant
time. A fast processing plugin can continue to process even
if its destination plugin contains a backlog of packets. Fur-
thermore, the fast plugin can query the size of the backlog
and choose to temporarily route packets to a different des-
tination until the backlog clears sufficiently.

A plugin may include a decision point (with a configurable
decision criteria or threshold) that causes it to output to
more than one queue, resulting in a fork in that pipeline.
Also, the plugins and queues may be reused across multiple
pipelines, resulting in a topology that is a mesh or lattice,
not a series of discrete linear pipelines.

Figure 1 shows an example of a complex plugin pipeline in
a lattice configuration. Decision points within each plugin
can cause forks in the pipeline, dynamically sending packets
on different paths. Plugin developers can reuse existing pub-
lish /subscribe parameters as input to their decision points
as appropriate. Merging of two paths is also supported al-
lowing for selected packets to make small deviations for ad-
ditional processing before rejoining another pipeline. Such a
configuration can be customized on a per deployment basis
involving a confederation of SmartNet gateways.

During testing, we have constructed a variety of com-
plex piplines that perform a variety of tasks such as: Net-
work Address Translation, protocol-based packet classifica-
tion, packet aggregation, and MTU enforcement. Prelimi-
nary testing shows that the overhead of using long pipelines
is minimal, allowing network administrators the ability to
replace numerous single-purpose middleboxes with a single
SmartNet solution.

Yes DTNBridge }—v’ DTNOutput ‘
J Bulk Traffic }—~’ Compression H Is Disrupted?
No

Interactive

Traffic

Router
ubP

{ IPOutput ‘

DTNInput

Figure 1: An example of a complex processing pipeline. SmartNet is capable of arranging plugins in a mesh
or lattice configuration allowing unlimited processing flexibility.

2.3.2 Pub-Sub Asynchronous Messaging

Plugins from different developers may need to exchange
control messages in a SmartNet configuration. For example,
a meter plugin and an optimization plugin may need to com-
municate in order for the latter to receive timely updates of
certain network state information. To accomplish this ob-
jective, the SmartNet provides a general purpose publish-
subscribe (pub-sub) messaging system.

The messaging system is dynamic, allowing plugins to
subscribe to information feeds either at initialization or on
an as needed basis. Plugins can unsubscribe when certain
information is no longer relevant, preventing unnecessary
message processing. Incoming messages are asynchronously
placed in the receiving plugin’s message queue, allowing the
plugin to process the message when convenient.

For the publisher, all messages are centrally managed by
the SmartNet core. The publishing plugin is not concerned
with who has subscribed to a feed. Once the plugin has
pushed the message to the pub-sub subsystem, it can return
to its normal processing without delay. In addition, a pub-
lisher can be configured to respond to specific requests for
information. This “pull” method is useful for messages that
may be costly to compute and are needed infrequently.

2.3.3 Composable Triggers

By utilizing the asynchronous messaging system, Smart-
Net provides a robust interface for network operators to
create composable triggers. Messages from multiple inde-
pendent meter plugins can be utilized to make optimization
decisions at any point in the packet pipeline. Triggers such
as “packet-loss rate < 1% AND bandwidth-x-delay product
< 400 Kb” can easily be composed.

For example, lets assume we have a router which provides
load balancing over two external connections. A simple load
balancer would attempt to divide the packet flows evenly
over the two connections which works well assuming the ex-
ternal connections are reliable. Now assume that both con-
nections are wireless and suffer from variable latency and
loss rates. The simple load balancer would operate inef-
fectively since it is blind to the reliability of the external
connections.

The load balancer functionality can easily be written to
operate as an optimization plugin on the SmartNet. Like-
wise, the two external connections would each be measured
by a plugin or plugins providing meter functionality. The
meter plugin(s) export information such as the packet loss
and bandwidth-delay product, which in turn is subscribed
to by the load balancer. With this information, the load
balancer can now effectively balance the packet load, taking
in to account the reliability of the external connections.

95

3. EVALUATION

To test the SmartNet design, we have created a Linux
based implementation written in C++ and consisting of both
the core SmartNet components and several plugins as de-
scribed in the previous section. The plugins are compiled
separately as Linux shared libraries, allowing SmartNet to
dynamically load and configure plugins at runtime. The
pipeline, as well as any plugin specific configuration param-
eters, is configured using text based configuration files.

Included in our initial release are the IPInput and IPOut-
put plugins which read and write packets from the Linux
networking stack, the DTNInput and DTNOutput plugins
which read and write packets from BBN Technologies’ Spin-
dle implementation [4], and the DTNBridge plugin which
adapts TCP packets to operate over a DTN-based proto-
col. Several other plugins, such as a routing plugin and
SplitTCP plugin, are included in the disribution. The open
source code is source and available on our website’.

SmartNet is designed to run in user-space, receiving pack-
ets from the Linux kernel via the Netfilter NFQUEUE tar-
get. This allows system administrators to selectively redirect
traffic to the SmartNet using firewall rules. Our implemen-
tation uses libcrafter [2] to perform all basic packet pars-
ing and manipulation routines. We use the lwIP networking
stack [1] in the DTNBridge plugin to simulate the remote
host. This allows us to efficiently strip out TCP flow control
and unnecessary header information when delivering packets
over DTN. Likewise, on the remote end IwIP emulates the
sending host to repack the DTN data in to a TCP packet.

The full results of our testing and evaluation may be found
in the Master’s Thesis of Lance Alt [3].

4. REFERENCES

[1] IwIP - A Lightweight TCP/IP stack, 2012.
http://savannah.nongnu.org/projects/lwip.

[2] liberafter, 2014.
https://code.google.com/p/libcrafter.

[3] L. A. Alt. Application transparent HT'TP over a

disruption tolerant SmartNet. Master’s thesis, Naval

Postgraduate School, Monterey, CA, USA, September

2014.

R. Krishnan et al. The SPINDLE disruption-tolerant

networking system. In Proceedings of the IEEE Military

Communications Conference (MILCOM), Orlando, FL,

USA, 2007.

J. P. Rohrer and G. G. Xje. DTN gateway architecture

for partially disconnected telemetry environments. In

Proceedings of International Conference on Connected

Vehicles and Ezxpo, Las Vegas, NV, USA, Dec. 2013.

"https://github.com/lancealt/npsgate

